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Abstract. We present a method for the analysis of functional prop-
erties of large-scale DNA strand displacement (DSD) circuits based on
Satisfiability Modulo Theories that enables us to prove the functional
correctness of DNA circuit designs for arbitrary inputs, and provides
significantly improved scalability and expressivity over existing meth-
ods. We implement this method as an extension to the Visual DSD tool,
and use it to formalize the behavior of a 4-bit square root circuit, to-
gether with the components used for its construction. We show that our
method successfully verifies that certain designs function as required and
identifies erroneous computations in others, even when millions of copies
of a circuit are interacting with each other in parallel. Our method is
also applicable in the verification of properties for more general chemical
reaction networks.

1 Introduction

The engineering of nanoscale devices from DNA has emerged as a powerful tech-
nology, with potential applications in nanomedicine and nanomaterials. More
recently, DNA strand displacement (DSD) has attracted attention as a promis-
ing approach for engineering molecular devices with complex dynamics [24], and
has been shown to scale to large circuits [17]. In spite of this potential, many
challenges remain before the design of DSD circuits with predictable, robust be-
havior becomes routine. In addition to the experimental difficulties of synthesis,
assembly, and elimination of cross-talk, the massive parallelism and complexity
of DSD circuits make their manual design challenging and error-prone.

A number of computational methods and tools have been developed to facili-
tate the design process. In particular, the Visual DSD tool [14] computes the set
of all possible strand displacement reactions generated from an initial collection
of DNA species, and simulates these reactions over time. Methods have also been
developed for proving that a set of strand displacement reactions is equivalent
to a reduced set of reactions [18, 7]. However, further work is needed to be able
to state and prove properties about the function that these reactions perform.
To help address this, methods based on probabilistic model checking have been
developed to prove properties about the states that a strand displacement circuit
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traverses, together with the expected time and probability of failure [13]. So far
however, these methods do not scale to realistic numbers of molecules. To help
improve scalability, a symbolic method called Z34Bio for analyzing large and po-
tentially infinite state spaces based on Satisfiability Modulo Theories (SMT) was
developed [21, 22]. This technique has been applied to study structural properties
of DNA circuits, such as the presence of exposed DNA sequences.

In this paper we present a method that allows the desired properties of a DNA
strand displacement circuit to be formalized as a high-level functional specifi-
cation, and formally verified for realistic numbers of molecules. The method
extends the use of SMT-solvers for analyzing chemical reaction networks pre-
sented in [21], and is implemented within the Visual DSD tool using the Z34Bio
framework, which is based on the Z3 theorem prover and SMT-solver [6]. To
illustrate this approach, we study a model of the 4-bit square root circuit de-
scribed in [2], which was originally developed as a localized circuit in contrast
to the design from [17]. We formalize and analyze functional properties of the
individual components used to construct this system, and show that a modified
version of this design functions correctly, even when millions of copies interact
with each other in parallel. We illustrate how our method helps identify de-
sign errors at both the component and circuit level. Although the method has
been tailored specifically for DNA strand displacement systems, it is also more
generally applicable for the analysis of chemical reaction networks.

2 SMT Analysis of Chemical Reaction Networks

This section summarizes the SMT-based method for analyzing Chemical Reac-
tion Networks (CRNs) presented in [21], which will be used in the remainder of
the paper. We denote a finite set as S = {s0, . . . , sN}, where |S| = N + 1 is the
number of elements in S. We use S = {(s0, n0), . . . , (sN , nN )} to denote a finite
multiset where each pair (si, ni) denotes an element si and its multiplicity ni,
with ni > 0. Given a multiset S we use s ∈ S for ∃n . (s, n) ∈ S and S(s) = n
when (s, n) ∈ S and S(s) = 0 otherwise. We define a CRN as a pair (S,R),
where S is a finite set of species and R is a finite set of possible reactions. A
reaction r ∈ R is defined as a pair of multisets r = (Rr, Pr) denoting the reac-
tants and products of r, respectively. For (s, n) ∈ Rr (respectively Pr), s ∈ S
is a species and n is the stoichiometry indicating how many molecules of s are
consumed (respectively produced) when reaction r takes place.

To study the dynamics of a CRN with single-molecule resolution, we formalize
its behavior as the transition system T = (Q, q0, T ), where Q is the set of states,
q0 ∈ Q is the uniquely defined initial state, and T ⊆ Q × Q is the transition
relation. Each state q ∈ Q is a multiset of species and q(s) indicates how many
molecules of s are present in state q. A reaction r is enabled in q if there are
enough molecules of each of its reactants for it to trigger; i.e., enabled(r, q) ↔∧

s∈S q(s) ≥ Rr(s). A state q is terminal if it has no enabled reactions i.e.
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Fig. 1. SMT-based Analysis. All trajecto-
ries explored by Bounded Model Check-
ing represent valid computations from q0
but Qk

r (e.g. k = 3, 7, 10) generally under-
approximates the reachable states Qr. The
over-approximation QInv allows proving
that state q′ is unreachable but spurious
states (e.g. q) may be included.

terminal(q)↔
∧

r∈R ¬enabled(r, q). The transition relation T is defined as

T (q, q′)↔
∨
r∈R

(enabled(r, q) ∧
∧
s∈S

q′(s) = q(s)−Rr(s) + Pr(s)). (1)

Once a CRN (S,R) is encoded as a transition system T = (Q, q0, T ) with
some initial state q0 ∈ Q, a number of analysis questions are expressible as
logical formulas and resolvable using model checking methods and SMT solvers
such as Z3 [6]. In the following, we focus on safety properties [16] i.e. a given
state predicate P : Q→ B holds for all reachable states. Let Qr ⊆ Q denote all
reachable states of T and let Qk

r ⊆ Q denote the set of states reachable in up to
k transitions from q0 (note that Qk

r ⊆ Qk+1
r ⊆ · · · ⊆ Qr).

We check the reachability of a state q ∈ Q such that ¬P (q) holds by using

an SMT solver to decide whether the formula ∃q1, . . . , qk .
∧k−1

i=0 T (qi, qi+1) ∧∨k
i=0 ¬P (qi) is satisfiable. The formula represents the unrolling of the transition

relation for k transitions from q0 (see Fig. 1 for an example). This type of ap-
proach is usually called Bounded Model Checking (BMC) [1] and is particularly
good at finding bugs in hardware and software, with the added advantage of
producing an explicit computation trace which demonstrates the behavior that
leads to the violation of P . However, since only bounded executions are consid-
ered and Qk

r generally under-approximates Qr for feasible choices of k (see [4]
for a discussion on the length of computation traces), this technique only serves
to prove that no errors are encountered in a finite number of transitions.

As a complementary approach based on inductive invariants, a state invariant
QInv such that Qr ⊆ QInv ⊆ Q, allows us to prove that all reachable states
satisfy P because

@q ∈ QInv . ¬P (q) → @q ∈ Qr . ¬P (q) → ∀q ∈ Qr . P (q) .

However, due to the over-approximation, this is not sufficient to prove the ex-
istence of reachable states violating the given property (see Fig. 1), since we
have

∃q ∈ QInv . ¬P (q) 6→ ∃q ∈ Qr . ¬P (q) .

An invariant QInv is computable through strategies developed for the analysis of
Petri nets [11], metabolic networks [9], and DNA circuits [21], where it captures
constraints such as mass-conservation (various techniques from hardware and
software analysis, e.g., abstract interpretation [5] also apply).
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Fig. 2. FANOUT Gate.

To analyze chemical reaction networks and DNA circuits, we combine the
BMC and state invariant approaches, where we prove that states with given
properties are unreachable in any number of steps using QInv but use BMC to
guarantee the reachability of states and identify finite computation traces with
specific behavior.

3 SMT Analysis of DNA Strand Displacement Circuits

In the following, we focus on circuits constructed as DNA strand displacement
(DSD) devices [24], which is the DNA computing paradigm supported in Vi-
sual DSD [14]. In [21] we utilized the known structure of DNA species in these
systems to develop an approach for the computation of constraints that was
specific to DSD circuits. Intuitively, the individual DNA strands from which
all species in the system are composed are preserved and their total amounts
remain unchanged. A set of constraints was computed to capture this conser-
vation of strands property, which allowed the computation of a state invariant
QInv (Sec. 2) based on the numbers of strands present initially (in state q0).
In Fig. 3 we illustrate this computation for the FANOUT gate shown in Fig. 2 (a
component of the circuit we study in Sec. 4), which produces multiple copies of
the output species O through a reporter R for a given input I, where the degree
of “fanout” is controlled through the amount of species F .

Throughout the rest of this section, we present new strategies extending the
approach and enabling the application of SMT-based methods to the analysis of
large scale DSD circuits.

3.1 Identification of Inactive Reactions

As discussed in Sec. 2, our analysis strategy based on state invariants (e.g.
computed using the method from [21] as in Fig. 3) is conservative, leading to the
possible identification of spurious (unreachable) states. We exemplify this1 on
the FANOUT gate (Fig. 2), for which the following constraints are derived when

1 Note that this example is similar to the one from Fig. 3, with the exception of the
input q0(I) = 0
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Fig. 3. Strand conservation along a computation of the FANOUT gate (Fig. 2). The
system is initialized in q0 = {(R, 10), (I, 1), (F1, 2), (F, 1)} (thick black border) and
terminates in the state shown with a red border. The total number of DNA strands (top
left box) remains unchanged in each state, which is captured using a set of constraints
(e.g. bottom right). Each constraint captures information about a DNA strand shared
between species (i.e. in each state, the sum of the molecule numbers of all species
sharing strand s is equal to the number of s present in the system), which defines a
state invariant QInv. See Eqn.(2) for a related example and [21] for additional details.

the system is initialized in state q0 = {(R, 10), (F1, 2), (F, 1)}:

q ∈ QInv ↔ q ∈ Q ∧
[q(s2) + q(I) = 0] ∧ [q(s1) + q(F1) = 2] ∧ [q(s4) + q(F ) = 1] ∧
[q(s3) + q(s0) + q(F1) = 2] ∧ [q(O) + q(R) = 10] ∧ (2)

[q(s4) + q(s2) + q(F1) = 2] ∧ [q(s3) + q(R) = 10] .

Given these constraints, only two terminal states q1, q2 ∈ QInv are possible where
q1 = q0 and

q2 = {(R, 9), (O, 1), (F1, 1), (s1, 1), (s3, 1), (s4, 1)} .

While q1 satisfies the expected behavior of the circuit (no output is produced
without input) state q2 violates it. However, due to the over-approximation of
QInv (see Sec. 2), this does not directly imply that the FANOUT gate is flawed.

A closer inspection of this example reveals that, when initialized in state q0,
no reactions are enabled for this system but such information is not captured in
the derived constraints and therefore spurious terminal states are identified. To
decrease this conservativeness, we use the available constraints QInv to identify
reactions that are disabled for any reachable state of the system (this might
require a call to the SMT solver for each r ∈ R but does not involve deep
reasoning for most). Then, we use this information to identify species which
are never produced (resp. consumed) and constrain their abundances to only
decrease (resp. increase) from their initial values. The procedure is repeated
iteratively until no additional constraints are derived (see Alg. 1).
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Algorithm 1 Given a DSD circuit (S,R) encoded as T = (Q, q0, T ) and an
invariant QInv, derive additional constraints to produce Q′Inv ⊆ QInv

1: Initialize Q′
Inv := QInv

2: repeat
3: Re := {r ∈ R | ∃q ∈ Q′

Inv . enabled(r, q)} {possibly enabled reactions}
4: Sp :=

⋃
r∈Re

{s ∈ S | s ∈ Pr} {producible species}
5: Sc :=

⋃
r∈Re

{s ∈ S | s ∈ Rr} {consumable species}
6: Qtmp := {q ∈ Q |

∧
s∈(S\Sp)

q(s) ≤ q0(s) ∧
∧

s∈(S\Sc)
q(s) ≥ q0(s)}

7: done := (Q′
Inv = Q′

Inv \Qtmp)
8: Q′

Inv := Q′
Inv \Qtmp

9: until done
10: return Q′

Inv

Applying Alg. 1 to the FANOUT gate produces the following additional con-
straints, which are sufficient to eliminate the spurious terminal state q2:

q ∈ Q′Inv ↔ q ∈ QInv ∧
[q(F ) ≥ 1] ∧ [q(R) ≤ 10] ∧ [q(I) ≤ 0] ∧ [q(F ) ≤ 1] ∧ [q(s2) ≤ 0] ∧
[q(s1) ≤ 0] ∧ [q(s0) ≤ 0] ∧ [q(s4) ≤ 0] ∧ [q(F1) ≤ 2] ∧ [q(F1) ≥ 2] .

The use of Alg. 1 is not guaranteed to eliminate all unreachable states cap-
tured in QInv. In other words, even though Q′Inv ⊆ QInv, the invariant still
over-approximates the reachable states (i.e. in general, Qr ⊆ Q′Inv) and, there-
fore, unreachable states q 6∈ Qr such that q ∈ Q′Inv might still exist. Even so,
the invariant strengthening strategy implemented in Alg. 1 is useful, particularly
for the analysis of DNA circuits as the ones discussed in Sec. 4. For such de-
signs, system inputs are encoded using the availability of chemical species where,
for specific input values, certain species are not supplied. In these cases, Alg. 1
identifies reactions that are never enabled and restricts Q′Inv accordingly.

3.2 Encoding Generalization

To identify erroneous computations for large DSD circuits such as the ones from
Sec. 3, a BMC strategy requires prohibitively long paths, since the transition
relation from Eqn. (1) only captures the execution of a single reaction per step.
In the following, we relax this requirement by abstracting the exact number of
consecutive executions of a reaction. Given states q, q′ ∈ Q

reach(q, q′, r, n) =

[
0 ≤ n ≤ mins∈Rr

{b q(s)
Rr(s)

c} ∧∧
s∈S q

′(s) = q(s)− nRr(s) + nPr(s)

]

expresses the property that state q′ is reachable from q through n consecutive
executions of reaction r ∈ R. The condition that the reaction is enabled is
implicitly captured in the choice of n (i.e. if r is disabled, then 0 ≤ n ≤ 0). The
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transition relation

T (q, q′)↔ q′ ∈ QInv ∧
∨
r∈R
∃n . reach(q, q′, r, n)

captures multiple executions of the same reaction in a given step and therefore
allows us to consider shorter computation traces. Note that this does not influ-
ence the completeness of the approach as single-reaction steps are also allowed.
Furthermore, available constraints (e.g. derived as in Sec. 3.1) are captured di-
rectly in the transition relation.

Besides re-defining the transition relation, we generalize the transition system
representation of a DSD circuit to T = (T,Q0, Q) where Q0 ⊆ Q is a (possibly
infinite) set of initial states. While currently, a circuit is defined using a unique
initial state (population of species) within Visual DSD, it is natural to reason
about the behavior of certain systems under a range of possible inputs, encoded
through the abundances of chemical species at the beginning of a computation,
which we illustrate in Sec. 4. Note that an invariant computed as in [21] depends
on the initial state and is therefore denoted as QInv(q), q ∈ Q0 in the following.
While applying Alg. 1 to explicit initial states q0 ∈ Q0 was sufficient for the
circuits we consider in Sec. 3, additional strategies are required for other systems.

3.3 Implementation of methods in Visual DSD

We developed a prototype implementation of the methods reviewed in Sec. 2,
together with the extension described in this section, as part of Visual DSD. The
implementation makes us of the Z3 theorem prover [6], which provides efficient
decision procedures for several theories including bit-vectors [20]. This allows us
to specify various system properties and automatically verify them during the
DSD circuit design process. The experimental results presented in Sec. 4 were
obtained on 2.5 GHz Intel L5420 CPU machines with a 2 GB memory limit
where computation required under a minute per benchmark.

4 Functional Analysis of a 4-bit Square Root Circuit

In this section, we study the 4-bit square root circuit design from [2]. First,
we formalize and analyze the functional behavior of the individual components
used for the construction of this system and then apply our method to study
properties of the full system, when multiple copies of the circuit are operating in
parallel. For each component, we define a set of initial states Q0 ⊂ Q capturing
the possible abundances of species (inputs, gates, etc) present at the beginning
of a computation and a property P (q0, q) that describes the expected output for
a given input, encoded as part of the initial state q0. To prove the correctness
of a circuit, we need to show that ∀q0 ∈ Q0, q ∈ Qr . terminal(q) → P (q0, q)
(i.e. for all input values, the correct output is produced when the computation
terminates, regardless of the initial abundances of other species). We compute
the state invariant QInv using the procedure from [21] illustrated in Fig. 3 (or
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Fig. 4. Modified FANOUT Gate with fanout degree of two.

Q′Inv extended through Alg. 1) and use it to prove that terminal(q)∧¬P (q0, q) is
not satisfiable for states q0 ∈ Q0 and q ∈ QInv(q0) (i.e. no terminal state exists
where incorrect output is produced). This formula is trivially unsatisfiable when
no terminal states exist (i.e. ∀q ∈ QInv . ¬terminal(q)) and, to conclude the
proof, we show that this is not the case. When incorrect behavior is identified
through this strategy (as is the case for one of the square root circuit designs we
explore), we use BMC (see Sec. 2) to identify an error trace.

FANOUT Gate The FANOUT gate (Fig. 2) introduced in Sec. 3.1 is intended to
split a particular input species I into multiple copies of output O, where the
degree of fanout is controlled through species F . We define the set Q0 = {q ∈
Q′Inv | q(s) > 0 if s ∈ {R,F1} and q(s) = 0 if s 6∈ {R,F1, I, F}} (i.e gates
F1, reporters R and possibly fanout F and input I species are present initially).
We used our analysis approach to prove that, for all initial states q0 ∈ Q0 and
terminal states q ∈ Q′Inv(q0) the behavior of the component formalized as

PFANOUT(q0, q)↔ q(O) =

{
q0(I) + q0(F ) when q0(I) > 0
0 otherwise

holds, as long as the additional conditions q0(R) ≥ q0(I) + q0(F ) and q0(F1) ≥
I are satisfied (i.e. there is an excess of reporters and gates). Note that this
behavior holds regardless of the specific input q0(I) and fanout q0(F ) settings.
Thus, the component adds a constant to the input value (when input is present)
but replicates the desired behavior q(O) = m · q0(I) only when q0(F ) = (m −
1) · q0(I) and, as a result, q0(F ) must be precisely tuned for a specific input
value. To obtain the correct behavior for arbitrary inputs, we redesign the gate
for fanout m = 2 as in Fig. 4 and show that the expected behavior

PFANOUT2(q0, q)↔ q(O) = 2 · q0(I)

is now satisfied when q0(F ) ≥ q0(I), q0(R) ≥ 2 · q0(I), and q0(F1) ≥ 2 · q0(F )
(i.e. gates and reporters are in excess).

AND Gate The AND gate (Fig. 5) is a component designed to implement the
corresponding logical operation. We define the set Q0 = {q ∈ QInv | q(s) >
0 if s ∈ {R,G} and q(s) = 0 if s 6∈ {R,G, IA, IB}} (i.e gates G, reporters R and
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Fig. 5. AND Gate

Fig. 6. OR Gate.

possibly inputs IA, IB are present initially). We prove that, for all initial states
q0 ∈ Q0 and terminal states q ∈ QInv(q0),

PAND(q0, q)↔ q(O) = min{q0(IA), q0(IB)} (3)

holds, as long as q0(R) ≥ q0(IA), q0(R) ≥ q0(IB), q0(G) ≥ q0(IA) and q0(G) ≥
q0(IB). The logical behavior of the AND gate is formalized using a threshold θ
where a signal represents the logical “true” if and only if the number of molecules
is greater than θ i.e. [q(O) > θ]↔ [q0(IA) > θ]∧ [q0(IB) > θ], which implements
the desired logical operation. This behavior follows directly from Eqn. (3) and
was also verified using our approach for arbitrary values of θ.

OR Gate The desired behavior of the OR gate (Fig. 6) is defined similarly to
the AND gate described above. We define the set Q0 = {q ∈ QInv | q(s) >
0 if s ∈ {R,GA, GB} and q(s) = 0 if s 6∈ {R,GA, GB , IA, IB}} (i.e gates GA, GB ,
reporters R and possibly inputs IA, IB are present initially). We prove that, for
all initial states q0 ∈ Q0 and terminal states q ∈ QInv(q0),

POR(q0, q)↔ q(O) = q0(IA) + q0(IB) (4)

holds, as long as q0(GA) ≥ q0(IA), q0(GB) ≥ q0(IB) and q0(R) ≥ q0(IA)+q0(IB).
As before, the logical behavior of the OR gate is formalized through a threshold θ
but here, a signal represents the logical “true” only if the number of molecules is
greater than θ i.e [q0(IA) > θ]∨ [q0(IB) > θ]→ [q(O) > θ]. This behavior follows
from Eqn. (4) and was also verified using our approach for arbitrary values of θ.
To avoid issues with the composition of multiple OR gates, the logical “false” is
left undefined for this component, which is sufficient for the implementation of
the square root circuit discussed next, where a dual-rail signal encoding is used.
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Full Square Root Circuit The square root circuit takes an input between
0 and 15 represented as a 4-bit binary number encoded using the concentra-
tions of 8 input chemical species (STRAND0, . . . ,STRAND7) in dual-rail logic
(see [2, 17] for details). The circuit computes the largest integer smaller than or
equal to the square root of the input and represents this 2-bit output using the
concentrations of 4 species (M0, L0,M1, L1). Following the design from [17], the
circuit is separated into a number of logical blocks (composed of the AND, OR,
and FANOUT gates studied above), each of which computes a separate part of the
output. Here, we study three different implementations of this circuit inspired
by the design from [2]. For one (referred to as SQRT1), distinct DNA domains
are used to prevent crosstalk between the logical blocks. However, this increases
the total number of domains required, which potentially increases the cost of
circuit construction. Motivated by this, we explore two simplified designs where
domains are shared between logical blocks and either the original FANOUT gate
design from Fig. 2 (SQRT2) or the modified one from Fig. 4 (SQRT3) is used. All
three circuits are designed to implement the mathematical operation

PSQRT(q0, q)↔ O(q) = b
√
I(q0)c)

where I(q0) ∈ {0, . . . , 15} for q0 ∈ Q0 and O(q) ∈ {0, . . . , 3} for q ∈ Q denote
the input and output of a circuit, specific to each design.

For SQRT1, we assume that N copies of each functional block are operating in
parallel. We use the existing Visual DSD model from [2] which defines the inputs
I and outputs O to capture the requirement that each circuit copy computes
the correct output independently (e.g. O(q) = 0 ↔ [q(M0) = N ] ∧ [q(M1) =
0] ∧ [q(L0) = N ] ∧ [q(L1) = 0] and O(q) = 3 ↔ [q(M0) = 0] ∧ [q(M1) =
N ] ∧ [q(L0) = 0] ∧ [q(L1) = N ]). The strategy from Sec. 3.1 allows us to prove
that SQRT1 implements this behavior correctly for N = {1, 102, 103, 106}. Note
that this circuit is distinct from the original, localized setup from [2], where only
a single copy of the circuit is considered in isolation.

To obtain requirements for a population-based design that are independent of
the precise numbers of molecules used as inputs, we define thresholds θI and θO
where θO ≤ θI . An input bit is set to true by including more than θI molecules
of the corresponding species which defines I() (e.g. I(q0) = 0 ↔ [STRAND0 >
θI ] ∧ [STRAND2 > θI ] ∧ [STRAND4 > θI ] ∧ [STRAND6 > θI ]). Similarly, an
output bit is considered true if θO or more molecules of an output species are
present (e.g. O(q) = 0↔ [q(M0) ≥ θO]∧[q(M1) = 0]∧[q(L0) ≥ θO]∧[q(L1) = 0]).
In practice, the numbers of molecules for each gate of a circuit cannot be set
precisely at the beginning of a computation and therefore we consider thresholds
Gl and Gu where, for each initial state q0 ∈ Q0, Gl ≤ q0(s) ≤ Gu for a gate
s ∈ S. This defines the set of initial states Q0 for a dual-rail input encoding (i.e.
where ∀q0 ∈ Q0 . q0(STRANDi) = 0 ∨ q0(STRANDi+1) = 0 for i = 0, 2, 4, 6)
where no species other than gates and inputs are present initially. Finally, we
assume that the error with which gates are supplied n = Gu − Gl is set to an
arbitrary number, which simplifies the analysis but is not restrictive in practice.

We use the formulation described above to show that design SQRT2 leads
to erroneous behavior where, for some input combinations, no terminal states
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Fig. 7. For the SQRT3 design with θO = 1, n = 0 and Gl = Gu = θI = 106 (i.e. one
million copies of both the circuit and its inputs are present), initialized in state q0
where I(q0) = 12 (input is 12) a computation trace producing incorrect output was
identified using the bounded model checking analysis method described in Sec. 2. In
each state, only the species with nonzero abundances and participating in the reaction
captured by the following transition are displayed. While part of the correct output
is produced (step 5), the full output is incorrect in the terminal state (highlighted in
red) and violates the dual-rail logical encoding (neither L0 nor L1 is produced). By
considering multiple executions of a reaction per transition, short computation traces
representing a large number of individual reactions are identified.

are ever reached. In other words, there exists an initial state q0 ∈ Q0 such
that no state q ∈ QInv(q0) is terminal, which violates a requirement that all
computations eventually terminate.

For SQRT3, we prove that the required behavior is satisfied for all input and
gate settings, as long as (i) Gl > θO, (ii) θI > 3Gu, and (iii) Gl > nθO. These
additional constraints capture important properties of the circuit that ensure its
correct operation. Constraint (i) captures the property that it is only possible
to produce as much output as there are available reporter gates, (ii) ensures
that enough of the input is supplied to be processed by each logical block of
the circuit, and (iii) formalizes the accuracy with which the output must be
measured as a function of the absolute number Gl and error n with which the
circuit gates are supplied. Intuitively, to measure stronger output signal (i.e.
where θO is higher) the lowest possible number of gates Gl must be increased
while the error n is decreased, which might also require the addition of more
input (if θI is higher). To confirm these requirements we used our method to
find erroneous computation traces when Gl = Gu = θI (Fig. 7). Such behavior
is also observed in stochastic simulations of a detailed models of the circuit
(capturing the chemical kinetics) but becomes rare as the number of gates is
increased and is easily missed (Fig. 8).
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Fig. 8. For the SQRT3 design with θO =
1, n = 0 and Gl = Gu = θI = 20 (i.e.
20 copies of both the circuit and its in-
puts are present), the correct outputs are
not produced for one out of the five sim-
ulated trajectories when the circuit is ini-
tialized in state q0 where I(q0) = 12 (input
is 12). Output species M1 and L1 are rep-
resented by blue and red lines, respectively
(output species M0 and L0 remain absent
throughout these computations). The tra-
jectory capturing the erroneous computa-
tion (reaching a terminal state at around
1500s) is highlighted.

In the analysis described above, we show that if SQRT3 terminates, the cor-
rect output is produced. To prove that the system terminates for any choice of
inputs, we employ standard Petri Net theory techniques for the computation
of T-invariants [11], which reveal that, in this particular design, no cycles are
possible and, therefore, termination is guaranteed.

5 Discussion

Despite the theoretical complexity of DNA strand displacement analysis prob-
lems [19], we demonstrate that an SMT-based method enables the analysis of
properties of large-scale DNA computing systems and is capable of handling the
largest designs currently constructed in wet labs. Although we focus on strand
displacement, using the power of SMT methods and their underlying solvers to
address challenging analysis questions in other DNA computing paradigms re-
mains an interesting topic for future research. Besides improved scalability, a ma-
jor advantage of the method compared to previous analysis strategies (e.g. [15])
is that it enables us to formalize and prove the functional correctness of systems
under arbitrary inputs or large numbers of copies operating in parallel.

There are several potential uses we envision for these methods in the field.
First, formalizing functionality requirements during the circuit design process
and invoking the method to prove the correctness of a model is crucial in medical
and industrial applications of DNA computing. For flawed designs, our method
allows the identification of erroneous computation traces. Such formal “bug hunt-
ing” has become indispensable for the design of software and hardware [12] where
subtle errors are hard to detect using simulation alone. Enabling a designer to
explicitly state the expected functionality and related assumptions, is often suffi-
cient to identify potential problems when reusing components in larger designs.
Furthermore, computation traces generated during analysis help identify spe-
cific inputs and conditions leading to a given behavior in the model, allowing
the actual behavior of the circuit to be examined in the lab.
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Second, analysis methods are useful as “compiler optimizations”, for exam-
ple by detecting reactions that will not be enabled for given inputs (as in our
method) thereby speeding up simulation. A tighter integration with a compiler
(e.g. Visual DSD) also benefits the analysis - our preliminary investigation sug-
gest that, in specific cases, disabled reactions can safely be removed from the
system during compilation rather than by using the more general procedure from
Sec. 3.1. Incorporating analysis capabilities within DNA compilers also allows
useful information to be provided to the designer and helps in understanding
circuit behavior.

Despite all analysis and design efforts, our methods only allow us to gain
confidence in the correctness of the available models, while the functionality
of a DNA circuit is ultimately determined experimentally in the lab. Even so,
models can be extended to include the additional complexities (e.g. unproductive
reactions, leak rates, etc.) required to capture the behavior of a circuit more
accurately. Furthermore, the ability to systematically analyze models has the
potential to aid the construction of circuits in the lab by allowing observed
experimental results that are also possible in the model (although potentially
rare) to be distinguished from situations where the modeling assumptions fail.

While the analysis of large-scale, single-molecule resolution models is the fo-
cus in this paper, SMT-based methods also enable the encoding and analysis of
approximations such as (non-linear) ODEs, where species concentrations are de-
scribed as continuous values but important system behavior is potentially missed.
In our current work, we focused specifically on a class of CRNs where compu-
tations do not depend on reaction kinetics. Recently, the class of mathematical
functions computable in chemical reactions networks with arbitrary kinetics was
characterized [3] and practical advantages of such systems were highlighted (e.g.
only a set of inputs is sufficient to initiate a computation [8]). Extending the
method described here to probabilistic systems to capture the additional com-
plexity of chemical kinetics (e.g. through the use of stochastic SMT [10]) is an
ongoing effort. For instance, in the present work, we study several DSD-circuits,
inspired by the localized square root circuit from [2]. Although this design is
similar to the one from [17], it does not use seesaw gates as a basic logical com-
ponent. The seesaw gate is capable of implementing either AND- or OR-type
behavior, but relies on differential binding rates between certain species to do
so and, as a result, there is a low probability that the circuit will compute the
incorrect output. Since chemical kinetics are not currently considered in our rep-
resentation, low probability computation traces (e.g. where an OR-gate behaves
as an AND-gate) would be identified as erroneous using our approach, without
taking into account their actual probability.

In this paper we consider DSD circuits where all species and reactions are
generated a priori (which is often the case for circuits of practical interest, but
with notable exceptions [15]) and the output is measured once a state is reached
where no additional reactions are possible. For more general chemical systems
and other DSD circuits, this is not always the case (e.g. when an output sig-
nal is computed but other auxiliary reactions are still enabled). Thus, DNA
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computing circuits may be viewed as reactive systems that continually perform
computation and react to external signals, rather than circuits that compute
some output and terminate. Richer specifications (e.g. as captured in temporal
logic) are useful for defining more general behavioral properties and are possible
in the proposed framework (e.g. through standard encodings as in [1]). Besides
capturing the functional properties discussed here, in [21] our methods proved
useful for studying certain structural properties such as the presence of exposed
DNA sequences in the transducer circuit designs from [15].

While termination is generally a challenging problem [23], it is possible to
obtain termination proofs for many concrete models. Here, we obtain such a
proof by adapting methods developed for Petri nets [11] to the particular circuit
design we study in this paper. Extending this method and adapting other recent
techniques to study termination in DSD circuits is a promising direction of future
research. More generally, several of the properties we study are closely related
to ones defined for Petri nets [11] and adapting techniques developed for their
analysis is currently ongoing. Notably, the use of Petri net methods (instead
of the strand-conservation strategy from [21]) to compute invariants for DSD
circuits does not substitute the strengthening procedure from Sec. 3.1 for the
examples we consider.

The iterative strengthening of inductive invariants (as in our strategy from
Sec. 3.1) has been studied in the context of software and hardware verification,
and the development of such methods for DNA circuits is being investigated
within our framework. The application of such methods also provides a promising
strategy for automatically uncovering important properties of circuit designs,
such as the ones we defined for the square root circuit and its components.
Finally, we study and prove the correctness of components of complex DNA
circuits in isolation but cannot guarantee that this behavior is maintained when
these components are used within larger systems - modularizing the analysis of
DNA circuits is an auspicious future direction.
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