A Concurrent Portfolio Approach to SMT
Solving

Christoph M. Wintersteiger', Youssef Hamadi?, and Leonardo de Moura®
! Computer Systems Institute, ETH Zurich, Switzerland
christoph.wintersteiger@inf.ethz.ch
2 Microsoft Research Cambridge, 7 JJ Thomson Avenue, Cambridge CB3 0FB, UK
youssefh@microsoft.com
3 Microsoft Research, One Microsoft Way, Redmond, WA, 98074, USA
leonardo@microsoft.com

Abstract. With the availability of multi-core processors and large-scale
computing clusters, the study of parallel algorithms has been revived
throughout the industry. We present a portfolio approach to deciding
the satisfiability of SMT formulas, based on the recent success of related
algorithms for the SAT problem. Our parallel version of Z3 outperforms
the sequential solver, with speedups of well over an order of magnitude
on many benchmarks.

1 Introduction

Z3 is a Satisfiability Modulo Theories (SMT) solver from Microsoft Research [4].
It is targeted at solving problems that arise in software verification and analysis
applications. Consequently, it integrates support for a variety of theories. Z3
participated in SMT-COMP’08, where it won 9 first places (out of 15), and
6 second places. Z3 uses novel algorithms for quantifier instantiation [2] and
theory combination [3]. The first external release of Z3 was in September 2007,
and the latest version was released in the beginning of 2009. Z3 integrates a
modern DPLL-based SAT solver, a core theory solver that handles equalities
and uninterpreted functions, satellite solvers (for arithmetic, arrays, etc.), and
an E-matching abstract machine (for quantifiers). Z3 is implemented in C++;
Figure 1 (left box) gives an overview of the architecture of the solver.

The ManySAT parallel SAT solver [6] won the parallel track of the 2008
SAT-Race.* It includes all the classical features of modern DPLL-based solvers
like two-watched literals, unit propagation, activity-based decision heuristics,
lemma deletion strategies, and clause learning. In addition to the classical first-
UIP scheme, it incorporates a new technique which extends the classical impli-
cation graph used during conflict-analysis to exploit the satisfied clauses of a
formula [1]. Unlike other parallel SAT solvers, ManySAT does not implement a
divide-and-conquer strategy based on some dynamic partitioning of the search

4 http://www-sr.informatik.uni-tuebingen.de/sat-race-2008/

space. On the contrary, it uses a portfolio philosophy which lets several sequen-
tial DPLLs compete and cooperate to be the first to solve the common instance.
These DPLLs are differentiated in many ways. They use complementary restart
strategies, VSIDS and polarity heuristics, and learning schemes. Additionally,
all the DPLLs exchange learnt clauses up to some static size limits, which allows
for super-linear speedups that would be difficult to reach in a portfolio without
sharing.

The portfolio approach is very attractive for SMT because it allows the use
of different encodings of a problem, as well as different theory solvers at the
same time. Moreover, SMT solvers frequently have to handle problems that are
in undecidable fragments (e.g., first-order logic and arithmetic, or non-linear
arithmetic). In these fragments, the solvers are much more fragile, and different
heuristics may dramatically affect performance.

On the following pages we present an integration of those two award-winning
techniques. To the best of our knowledge, this constitutes the first implementa-
tion of a parallel SMT solver available to the public.

2 Portfolios

Modern SMT solvers are based on a decomposition of the input problem into
a propositional problem, and theory-specific problems over the formula atoms.
This allows the use of modern SAT solving techniques alongside theory-specific
solvers. Each of them employs a great number of heuristics to solve industrial
size problems efficiently.

In our parallel version of Z3, we parallelize the sequential solver by running
multiple solvers, each configured to use different heuristics, i.e., by running a
portfolio of solvers. If two heuristics are known to work well on disjoint bench-
mark sets, then we can expect speedups from this technique.

To further improve the performance of our solver, we share derived lemmas
between solvers. New lemmas are derived as part of conflict analysis in the SAT
and theory solvers. When running multiple solvers in parallel, they are likely to
investigate different parts of the search space at a given point in time. Sharing
lemmas may prevent a solver from entering a search space that was previously
investigated by another solver, thus improving the performance of the first solver.

73 has a portfolio of theory solvers. For example, Z3 supports multiple arith-
metic solvers: a trivial solver that treats all arithmetic functions as uninterpreted,
two difference-logic solvers (based on the Bellman-Ford and Floyd-Warshall al-
gorithms), as well as a simplex based solver. Since Z3 cannot tell which of the
arithmetic solvers would be the quickest to decide the formula beforehand, we
can run them in parallel and abort the computation as soon as one of them is
able to deliver a definite result. Note that using the first three solvers is equiv-
alent to constructing conservative over-approximations of the formula. If either
of them decides the formula to be unsatisfiable, then so must the simplex-based
solver. Sharing information in a portfolio of over-approximating solvers is sound,
as solvers decide the formula only for unsatisfiable input formulas. It is also a way

of implicit approximation refinement, as approximations become more precise by
importing lemmas derived from the precise formula. When sharing information in
a portfolio of under-approximations, or mixed under- and over-approximations,
sharing is only sound in one direction, i.e., from precise to less precise formulas.

3 Implementation

Formula

Simplifier

Simplifier

Theory Solvers
(Heuristic T1)

Theory Solvers
(Heuristic T2)

Congruence Closure Core

Congruence Closure Core

E-Matching Engine

SAT Solver
(Heuristic $2)

SAT Solver
(Heuristic S1)

Fig. 1: Schematic overview of the Z3 parallelization.

In this section we discuss the main components of our implementation. The
parallel version of Z3 is based on the newest version of the sequential Z3 SMT
solver. The implementation of the multi-core (shared-memory) functionality was
implemented with the help of the OpenMP library, while multi-node function-
ality was added using an MPI library. Here, we focus on multi-core operation.

‘We made the observation that most benchmarks in the SMT library require a
relatively small amount of memory to solve, when compared to SAT benchmarks,
e.g., it is rare to see benchmarks that require more than 100 MB of memory.
We thus made the design decision to copy all input data to all cores, once it is
read from a file or handed to the solver using the Z3 API. This eliminates the
need for locks on the formula, and enables us to use unlocked reference counters.
Furthermore, it allows us to modify the input formula before (or after) handing
it to a core, which is important if different (precise or approximating) encodings
are to be solved, or if we would like to split the search space (e.g., by adding
constraints on variables). Our experiments indicate that the additional memory
overhead is of consequence only on very large instances.

Lemma exchange between cores is achieved by the help of lockless queues
that hold references to all lemmas that a core wants to export. Upon reaching
decision level 0 in the SAT solver, every core checks his queues for new lemmas
to import.

3.1 Challenges

While working on our parallelization of Z3, we met two important challenges
that we propose to discuss. First, we noticed that there is a considerable over-
head when simply running multiple identical solvers in parallel. This overhead
is induced by cache and memory bus congestion, and has a considerable impact
on the performance of each solver in our portfolio. Figure 2a shows the aver-
age number of propositional propagations that each core is able to perform in a
setup of identical solvers. This number drops dramatically from almost 2.5 mil-
lion propagations per second to only 2.3 million when eight cores are employed.
This corresponds to a 7 % decrease in solver performance.’?

2600 — T T T 100 ‘l k‘i T T
ocked —+—

T T T
w)o sharing —+—
2500 7 lockless - - x-

w/ sharing - - x-
2400 |- M]
X
2300 [~ ke B

80 —

60 -

40 —

solver time [sec.]

Avg. 1000 Propagations/sec

2200 X B
2100 | % 20 -
2000 1 1 1 1 1 1 1 1 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Cores # Cores

(a) Avg. Core performance with and with- (b) Locked vs. lockless memory manager.
out sharing of lemmas up to size 2.

Fig. 2: Parallelization and Sharing Overhead

Another challenge that we faced was memory allocation. While the sequential
version of Z3 uses a global memory manager, we found that locking the global
manager in the parallel version imposes far too much overhead. We solved this
problem by reserving memory in separate heaps for each thread. Figure 2b de-
picts the difference in runtime that we witnessed on a small, but memory intense
benchmark when running identical solvers on all cores. Clearly, the reduction in
runtime by using a lockless memory manager is significant.

3.2 Portfolio

The default configuration of our implementation uses the same portfolio as
ManySAT on the first four cores, i.e., it only diversifies based on heuristics spe-
cific to the built-in SAT-solver. Additional cores are configured by using different
combinations of settings. Other configurations may be set from the command
line, a feature available to the user in order to define their own portfolios.

® These numbers were obtained from a single, statistically non-relevant file. The num-
ber of propagations per second varies greatly across different benchmarks; the rela-
tive change in performance is typical, however.

3.3 Lemma Sharing

We experimented with different lemma sharing strategies, and found that sharing
of lemmas up to a size of 8 literals performed best on our benchmarks. This is not
surprising, as it is also the best performing sharing strategy in ManySAT (cf. [5]).

4 Experimental Evaluation

We present results on experiments on benchmarks from the SMT library%, more
specifically, the QF_IDL category, which consists of 1673 benchmark files. The
results we present here were obtained on AMD Opteron 2.0 GHz machines with
8 cores and 16 GB of RAM. For our experiments we used four cores on each
of the machines, and we compare against the sequential version of Z3 (using
the configuration that was used in SMT-COMP’08); the timeout was set to 300
seconds. Our results indicate, that running four different arithmetic solvers

= ERRERREE ! E SRRRE R
= + £ +
<= =
n »n
(=] —~
z 5
0
4 g
5 s
2 N
0 =
E £
= <
< R
Sequential Z3 Sequential Z3
(a) without sharing (b) with sharing

Fig. 3: Four arithmetic solvers

11 ST o0
" T e i E
. N <
Z 100 + o+ #ﬁ* g 2 100
@ + i = >
~ + + -
g i 8
g] &
5 0F - ifm, R BT
3 =+, i + 3
= <
@ #ﬁ %,*++ |)
- s S Fo =
1 10 100)
Sequential Z3 Sequential Z3
(a) Four strategies (b) Four Random Seeds

Fig.4: Four SAT solvers with sharing

S http://www.smt-1ib.org

achieves speedups only on very few benchmarks, and due to the parallelization
overhead many benchmarks take more time to solve than in the sequential version
(Fig. 3a). This changes considerably when sharing is enabled, as demonstrated
in Fig. 3a. Many benchmarks are now solved faster, with speedups between 1
and 25. Due to the large number of small benchmarks in the set, the average
speedup is only 1.06. Excluding files that can be solved in less than 60 seconds
by the sequential version, the average speedup is 3.2.7

We achieve similar results by diversifying the SAT strategies in our solver
(Fig. 4). Using the four strategies used in ManySAT, we see an average speedup
of 1.14, resp. 2.6 on the 60+ seconds benchmarks. As Fig. 4a shows, the speedup
on many of the benchmarks is super-linear, with a maximum speedup of 40.

The best results we have seen during our experiments, were produced by a
portfolio of identical solvers with sharing, each initialized by a different random
seed. Those results are presented in Fig. 4b; the average speedup is 1.28 and the
speedup on the 60+ seconds benchmarks is 3.5, i.e., close to linear on average.
The maximum speedup we see in this configuration is 50.

5 Status & Availability

We currently investigate different portfolios and their performance on SMT-
lib benchmarks. The parallel version of Z3 is also used on internal projects
to improve the performance of multiple software-verification projects, and we
expect more and better portfolios to arise from the use of our solver in practice.

The parallel version of Z3 is released alongside the sequential version. It is
available from the Z3 project website.®

References

1. G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais. A Generalized
Framework for Conflict Analysis. In SAT’08. Springer, 2008.

2. L. de Moura and N. Bjgrner. Efficient E-matching for SMT Solvers. In CADE’07.
Springer-Verlag, 2007.

3. L. de Moura and N. Bjgrner. Model-based Theory Combination. In SMT’07, 2007.

4. L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In TACAS’08, 2008.

5. Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: A Parallel SAT Solver. Journal of
Satisfiability, to appear, 2008.

6. Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: Solver Description. Technical
Report MSR-TR~2008-83, Microsoft Research, May 2008.

" Below this point the parallelization overhead dominates. For further investigation
the full benchmark data set may be obtained from
http://research.microsoft.com/~leonardo/z3-cav2009-results.zip

8 http://research.microsoft.com/projects/z3/

