
Loop summarization and termination analysis?

Aliaksei Tsitovich1, Natasha Sharygina1,
Christoph M. Wintersteiger2, and Daniel Kroening2

1 Formal Verification and Security Group, University of Lugano, Switzerland
2 Oxford University, Computing Laboratory, UK

Abstract. We present a technique for program termination analysis
based on loop summarization. The algorithm relies on a library of ab-
stract domains to discover well-founded transition invariants. In contrast
to state-of-the-art methods it aims to construct a complete ranking argu-
ment for all paths through a loop at once, thus avoiding expensive enu-
meration of individual paths. Compositionality is used as a completeness
criterion for the discovered transition invariants. The practical efficiency
of the approach is evaluated using a set of Windows device drivers.

1 Introduction

The program termination problem has received increased interest in the recent
past. In practice, termination analysis is at a point where industrial applica-
tion of termination proving tools is feasible. This is possible through a series of
improvements upon methods that prove program termination by constructing
well-founded ranking relations.

Podelski and Rybalchenko propose disjunctive well-foundedness of transition
invariants [2] as a means to improve the performance of termination proving, as
well as to simplify synthesis of ranking relations. Based on their crucial discov-
ery, the same authors together with Cook give an algorithm to verify program
termination using iterative construction of transition invariants — the Termi-
nator algorithm [3, 4]. This algorithm exploits the relative simplicity of ranking
relations for a single path of a program. It relies on a safety checker to find
previously unranked paths of a program, computes a ranking relation for each
of them individually, and disjunctively combines them to form a global (disjunc-
tively well-founded) termination argument. This strategy shifts the complexity
of the problem from ranking relation synthesis to safety checking, a problem for
which many efficient solutions exist.

The Terminator algorithm was successfully implemented in tools (e.g., Ter-
minator [4], ARMC [5], SatAbs [6]) and applied to verify industrial code, most
notably Windows device drivers. However, it has subsequently become apparent
that the safety check is a bottleneck of the algorithm, taking up to 99% of the

? Supported by the Swiss National Science Foundation under grant no. 200020-122077
and by a Microsoft Software Engineering Innovation Foundation (SEIF) Award.
Christoph M. Wintersteiger is now with Microsoft Research, Cambridge, UK.

runtime in practice [4, 6]. The runtime required for ranking relation synthesis is
negligible in comparison. A possible solution to this performance issue is Compo-
sitional Termination Analysis (CTA) [7]. This method limits path exploration to
several iterations of each loop of the program. Transitivity (or compositionality)
of the intermediate ranking arguments is used as a criterion to determine when
to stop the loop unwinding. This allows for a reduction in runtime, but intro-
duces incompleteness since a transitive termination argument may not be found
for each loop of a program. However, an experimental evaluation on Windows
device drivers indicates that this case is rare in practice.

The complexity of the termination problem together with the observation
that most loops in practice have (relatively) simple termination arguments sug-
gests the use of light-weight static analysis for this purpose. In this paper, we
propose a new technique for termination analysis, which extends a known al-
gorithm for loop summarization [8] based on abstract interpretation [9]. The
crucial difference between the previous approach and our proposal is the use of
(disjunctively well-founded) transition invariants instead of state invariants dur-
ing summarization. Furthermore, fixpoint computation of abstract transformers
is avoided (but required by other methods, e.g., [10, 11]).

Our algorithm constructs summaries for loops, starting from the inner-most
loop in the control flow graph of the program. In case of nested loops, inner loops
are replaced with (loop-free) summaries during verification. At any point during
the analysis, the problem is therefore reduced to the analysis of a single loop.
During construction of the loop summaries, our algorithm relies on a library
of templates for abstract domains. These are used to construct candidates for
transition invariants, which subsequently are verified to be actual disjunctively
well-founded transition invariants by means of a safety checker and a satisfiabil-
ity decision procedure. Due to the fact that the safety checker is employed to
analyze only a single unwinding of a loop at any point, we gain large speedups
compared to algorithms like Terminator or CTA. At the same time, the false-
positive rate of our algorithm is very low in practice, which we demonstrate
using an experimental evaluation on a diverse suite of C programs.

This paper is organized as follows: Section 2 introduces the theoretical back-
ground, Section 3 presents our new methods. Section 4 proposes an optimization
that simplifies the selection of candidates for transition invariants. In Section 5
we give experimental evidence of the practicality of our approach. Section 6 re-
lates this approach to size-change termination principle and discusses the other
related work. Finally, Section 7 suggests future work and concludes.

2 Background

We formalize programs as transition systems.

Definition 1 (Transition System). A transition system (program) P is a
three tuple 〈S, I,R〉, where

– S is a (possibly infinite) set of states,

2

– I ⊆ S is the set of initial states,
– R ⊆ S × S is the transition relation.

A computation of a transition system is a (maximal) sequence of states
s0, s1, . . . such that s0 ∈ I and (si, si+1) ∈ R for all i ≥ 0.

The reflexive and non-reflexive transitive closures of R are denoted as R∗

and R+ respectively. The set of reachable states is R∗(I). We also define the
relational composition operator ◦ for two relations R1, R2 : S × S by

R1 ◦R2 := { (s, s′) ∃s′′.(s, s′′) ∈ R1 ∧ (s′′, s′) ∈ R2 } .

Note that a relation R is transitive if it is closed under relational composition,
i.e., when R ◦R ⊆ R.

2.1 Termination

A program is terminating if it does not allow infinite computations, which fol-
lows from well-foundedness of the transition relation (restricted to the reachable
states). A well-founded relation is a relation that does not contain infinite de-
scending chains or, more formally:

Definition 2 (Well-foundedness). A relation R is well-founded (wf.) over S
if for any non-empty subset of S there exists a minimal element (with respect to
R), i.e. ∀X ⊆ S . X 6= ∅ =⇒ ∃m ∈ X,∀s ∈ S(s,m) /∈ R.

The same does not hold true for the weaker notion of disjunctive well-
foundedness. However, Podelski and Rybalchenko show that disjunctive well-
foundedness of a transition invariant is equivalent to program termination:

Definition 3 (Disjunctive Well-foundedness [2]). A relation T is disjunc-
tively well-founded (d.wf.) if it is a finite union T = T1∪ . . .∪Tn of well-founded
relations.

Definition 4 (Transition Invariant [2]). A transition invariant T for pro-
gram P = 〈S, I,R〉 is a superset of the transitive closure of R restricted to the
reachable state space, i.e., R+ ∩ (R∗(I)×R∗(I)) ⊆ T .

The crucial theorem is as follows:

Theorem 1 (Termination [2]). A program P is terminating iff there exists a
d.wf. transition invariant for P .

The Terminator algorithm [4] automates the construction of d.wf. transition
invariants. It starts with an empty termination condition T = ∅ and queries a
safety checker for a counterexample — a computation that is not covered by the
current termination condition T . Next, a ranking relation synthesis algorithm
is used to obtain a termination argument T ′ covering the transitions in the
counterexample. The termination argument is then updated to T = T ∪ T ′

and the algorithm continues to search for counterexamples. Finally, either a

3

complete (d.wf.) transition invariant is constructed or there does not exist a
ranking relation for some counterexample, in which case the program is reported
as non-terminating.

To comply with the terminology in the existing literature, we define the
notion of compositionality for transition invariants as follows:

Definition 5 (Compositional Transition Invariant [2, 7]). A d.wf. transi-
tion invariant T is called compositional if it is also transitive, or equivalently,
closed under composition with itself, i.e., when T ◦ T ⊆ T .

Podelski and Rybalchenko made an interesting remark regarding the composi-
tionality (transitivity) of transition invariants: If T is transitive, it is sufficient
to show that T ⊇ R instead of T ⊇ R+ to conclude termination, because a com-
positional and d.wf. transition invariant is well-founded, since it is an inductive
transition invariant for itself [2]. Therefore, compositionality of a d.wf. transition
invariant implies program termination. This fact is exploited in Compositional
Termination Analysis [7], which iteratively constructs a termination argument,
similar to the Terminator algorithm. In contrast to Terminator however, the
safety checker is not required to analyze complete loops. Instead, the algorithm
checks an increasing number of unwindings of the loops in the program until a
compositional transition invariant is established. This technique results in sig-
nificant speed-ups in practice, but comes at a price: there is no guarantee that
a compositional transition invariant can be found for every loop.

2.2 Loop Summarization

In the following section we present a method for static analysis based on a pre-
viously presented loop summarization algorithm [8]. This technique constructs
sound program abstractions for the purpose of scalable static analysis. It re-
places loops in a program by smaller loop-free program fragments that over-
approximate the original behavior of the loop.

Algorithm 1 presents an outline of this procedure. The function Summarize
traverses the control-flow graph of the program P and calls itself recursively
for each block with nested loops. If a block contains a non-nested loop, it is
summarized using the function SummarizeLoop and the resulting summary
replaces the original loop in P ′. Consequently, any outer loop eventually becomes
non-nested, which enables further progress.

The function SummarizeLoop computes the summaries. A simple over-
approximation can be obtained by replacing a loop by a program fragment that
‘havocs’ the state, i.e., by setting all variables which are (potentially) modified
during loop execution to non-deterministic values. To improve the precision of
these summaries, they are strengthened by (partial) loop invariants. Summa-
rizeLoop has two subroutines that are related to invariant discovery: 1) Pick-
InvariantCandidates, which generates a set of ‘invariant candidates’ using
a library of abstract domains, and 2) IsInvariant, which checks whether a
candidate is an actual invariant for a given loop.

4

1 Summarize(P)
2 input: program P
3 output: Program summary
4 begin
5 foreach Block B in ControlFlowGraph(P) do
6 if B has nested loops then
7 B :=Summarize(B)
8 else if B is a single loop then
9 B :=SummarizeLoop(B)

10 return P

11 SummarizeLoop(L)
12 input: Single-loop program L (over variable set X)
13 output: Loop summary
14 begin
15 I := >
16 foreach Candidate C(X) in PickInvariantCandidates(Loop) do
17 if IsInvariant(L, C) then
18 I := I ∧ C

19 return “Xpre := X; havoc(L); assume(I(Xpre) =⇒ I(X));”

20 IsInvariant(L, C)
21 input: Single-loop program L (over variable set X), invariant candidate C
22 output: TRUE if C is invariant for L; FALSE otherwise
23 begin
24 return Unsat(L(X,X ′) ∧ C(X) ⇒ C(X ′))

Algorithm 1: Basic routines of loop summarization

Note that this summarization algorithm does not preserve loop termination:
the summaries computed by the algorithm are always terminating program frag-
ments. This abstraction is a sound over-approximation, but it may be too coarse
for programs that contain unreachable paths.

3 Loop Summarization with Transition Invariants

In this section, we introduce a method that allows transition invariants to be
included as a strengthening of loop summaries. This increases the precision of
loop summaries and enables construction of termination proofs over summaries.

According to Definition 4, a binary relation T is a transition invariant for a
program P if it contains R+ (restricted to the reachable states). However, the
transitivity of T is also a sufficient condition when T is only a superset of R:

Theorem 2. A binary relation T is a transition invariant for the program
〈S, I,R〉 if it is transitive and R ⊆ T .

Proof. From transitivity of T it follows that T+ ⊆ T . Since R ⊆ T it follows
that R+ ⊆ T . ut

5

This simple fact allows for an integration of transition invariants into the
loop summarization framework by a few adjustments to the original algorithm.
Consider line 16 of Algorithm 1, where candidate invariants are selected. Clearly,
we need to allow selection of transition invariants here, i.e., invariant candidates
now have the form C(X,X ′), where X ′ is the post-state of L.

What follows is a check for invariance of C over L(X,X ′), i.e., a single un-
winding of the loop. Consider the temporary (sub-)program 〈S, S, L〉 to represent
the execution of the loop from a non-deterministic entry state, as required by
IsInvariant. A transition invariant for this program is required to cover L+,
which, according to Theorem 2, is implied by L ⊆ C and transitivity of C. The
original invariant check in IsInvariant establishes L ⊆ C, when the check for
unsatisfiability receives the more general formula L(X,X ′) ∧ C(X,X ′) as a pa-
rameter. The summarization procedure furthermore requires a slight change to
to include a check for compositionality. The resulting procedure is Algorithm 2.

1 SummarizeLoop-TI(L)
2 input: Single-loop program L with a set of variables X
3 output: Loop summary
4 begin
5 T := >
6 foreach Candidate C(X,X ′) in PickInvariantCandidates(Loop) do
7 if IsInvariant(L, C) ∧ IsCompositional(C) then
8 T := T ∧ C

9 return “Xpre := X; havoc(L); assume(T (Xpre, X));”

Algorithm 2: Loop summarization with transition invariants

The additional compositionality (transitivity) check at line 7 of Algorithm 2
corresponds to a check for satisfiability of

∃si, sj , sk ∈ S . ¬ (C(si, sj) ∧ C(sj , sk)⇒ C(si, sk)) , (1)

which may be decided by a suitable decision procedure, e.g., an SMT solver.
Of course, this check may be omitted if the selected invariant candidates are
compositional by construction.

Termination. The changes to the summarization algorithm allow for termi-
nation checks during summarization through application of Theorem 1, which
requires a transition invariant to be disjunctively well-founded. This property
may be established by allowing only disjunctively well-founded invariant candi-
dates, or it may be checked by means of decision procedures (e.g., SMT solvers
where applicable). According to Definition 3, d.wf.-ness of a candidate relation T
requires establishing well-foundedness of each of its disjuncts. This can be done
by an explicit encoding of the well-foundedness criteria of Definition 2. However,

6

the resulting formula contains quantifiers, which severly limits the applicability
of existing decision procedures.

4 Selection of Candidate Invariants

In this section, we propose a set of specialized candidate relations, which we
find to be useful in practice. We focus on transition invariants for machine-level
integers for programs implemented in low-level languages like ANSI-C.

In contrast to other work on termination proving with abstract domains
(e.g., [11]), we do not aim at general domains like Octagons or Polyhedra, as they
are not designed for termination and the required d.wf.-ness and compositionality
checks can be costly. Instead we prefer domains that

– generate few, relatively simple candidate relations, and
– allow for efficient d.wf. and compositionality checks.

Note that very similar criteria are applied in termination provers based on the
size-change termination principle. This connection is discussed in more detail in
Sec. 6.1.

Arithmetic operations on machine-level integers usually allow overflows, e.g.,
the instruction i = i + 1 for a pre-state i = 2k − 1 results in a post-state
i′ = −2k−1 (when represented in two’s-complement), complicating termination
arguments. If termination of the loop depends only on machine-level integers,
there is however a way to simplify the argument:

Observation 3. If T : K ×K is a strict order relation for a finite set K ⊆ S
and is a transition invariant for the program 〈S, I,R〉, then T is well-founded.

Proof. T is a transition invariant, i.e., it holds for all pairs (k1, k2) ∈ K × K.
Thus it is total. Non-empty finite totally-ordered sets always have a least element
and, therefore, T is well-founded. ut

A total strict order relation is also transitive, which gives rise to a criterion
weaker than Theorem 1:

Corollary 1. A program terminates if it has a transition invariant T that is
also a finite strict order relation.

This corollary allows for a selection of invariant candidates that ensures (dis-
junctive) well-foundedness of transition invariants. An explicit check is therefore
not required.

Note that strictly ordered and finite transition invariants exist for many
programs in practice: machine-level integers or strings of fixed length have a finite
number of possible distinct pairs and strict natural or lexicographical orders are
defined for them as well.

7

Constraint Meaning

1 i′ < i
i′ > i

A numeric variable i is strictly decreasing (increas-
ing).

2 x′ < x
x′ > x

Any loop variable x is strictly decreasing (increas-
ing).

3
sum(x′, y′) < sum(x, y)
sum(x′, y′) > sum(x, y)

The sum of all numeric loop variables is strictly de-
creasing (increasing).

4

max(x′, y′) < max(x, y)
max(x′, y′) > max(x, y)
min(x′, y′) < min(x, y)
min(x′, y′) > min(x, y)

The maximum or minimum of all numeric loop vari-
ables is strictly decreasing (increasing).

5

(x′ < x ∧ y′ = y)∨
(x′ > x ∧ y′ = y)∨
(y′ < y ∧ x′ = x)∨
(y′ > y ∧ x′ = x)

A combination of strict increasing or decreasing for
one of loop variables while the remaining ones are
not updated.

Table 1. Templates used to generate transition invariant candidates

5 Evaluation

We have implemented the algorithm described in the previous section in a new
version of the static analyzer LoopFrog [12]. The tool operates on program
models produced by the Goto-CC model extractor; ANSI-C programs are con-
sidered as the primary target.

We implemented a number of domains based on strict orders, thus, following
Corollary 1, additional checks for compositionality and d.wf.-ness of candidate
relations are not required. The domains are listed in Table 1.

The full set of experimental results is available on-line. Here, we only report
the results for the two most illustrative schemata:

– LoopFrog 1: domain #3 in Table 1. Expresses the fact that a sum of
all numeric variables of a loop is strictly decreasing (increasing). This is
the fastest approach, because it generates very few (but large) invariant
candidates per loop;

– LoopFrog 2: domain #1 in Table 1. Expresses strict decreasing (increasing)
for every numeric variable of a loop. This generates twice as many simple
strict orders as there are variables in a loop;

As reference points we use termination provers built upon the CBMC/SatAbs
framework [13]. This tool implements both Compositional Termination Analysis
(CTA) [7] and the Terminator algorithm [3] (referred to as SatAbs+T in all
tables). For both the default ranking function synthesis methods were enabled;
for more details see [6].

We experimented with a large number of ANSI-C programs including:

8

– The SNU real-time benchmark suite that contains small C programs used
for worst-case execution time analysis3;

– The Powerstone benchmark suite as an example set of C programs for em-
bedded systems [14];

– The Verisec 0.2 benchmark suite [15];
– Windows device drivers (from the Windows Device Driver Kit 6.0).

All experiments were run on an Ubuntu server equipped with a Dual-Core
2 GHz Opteron 2212 CPU and 4 GB of memory. The timeout was set to 120
minutes if an analysis is applied to all loops at once (LoopFrog) or to 60
minutes per loop (CTA and SatAbs+T).

The results for SNU and Power-Stone are presented in Tables 2 and 3. Each
table reports the number of loops that were proven as terminating (T), po-
tentially non-terminating (NT) and time-out (TO) for each of the compared
techniques. The time column contains the wall-clock time spend for the analysis
of completed loops; time-outs are not included in the total time.

The results for the Verisec 0.2 benchmark suite are given in the aggregated
form in Table 4. The suite consists a large number of stripped C programs that
correspond to known security bugs. Although each program has only very few
loops, the benchmark set offers a large variety of loop types and is therefore
interesting for termination analysis.

The aggregated data on experiments with Windows device drivers is provided
in Table 5. The benchmarks are grouped according to the harness used upon
extraction of a model with Goto-CC.4 We omit results of the Terminator
algorithm for this benchmark set, as a corresponding comparison was already
reported previously [7].

Discussion Note that direct comparison of the runtime of LoopFrog with that
of iterative techniques like CTA and Terminator is not fair. The latter methods
are complete at least for finite-state programs, relative to the completeness of the
ranking synthesis method. Our loop summarization technique, on the other hand,
is a static analysis that only aims at conservative abstractions. In particular, it
does not try to prove unreachability of a loop or of preconditions that lead to
non-termination5.

The timing information provided here serves as a reference that allows to
compare efforts of achieving the same result. In summary, the three techniques
can be compared as follows:

– LoopFrog spends time enumerating invariant candidates, provided by the
chosen abstract domain, and has to check just one loop iteration. Composi-
tionality and d.wf. checks are not required for the domains we use.

3 http://archi.snu.ac.kr/realtime/benchmark/
4 The groups in Table 5 have varying numbers of benchmarks/loops as we omit the

benchmarks without loops.
5 In future, we plan to use a loop-free stem to prove unreachability of certain loop

preconditions.

9

Benchmark Method T NT TO Time

adpcm-test
18 loops

LoopFrog 1 13 5 0 470.052
LoopFrog 2 17 1 0 644.092
CTA 13 3 2 260.982+
SatAbs+T 12 2 4 165.673+

bs
1 loop

LoopFrog 1 0 1 0 0.05
LoopFrog 2 0 1 0 0.118
CTA 0 1 0 12.218
SatAbs+T 0 1 0 18.469

crc
3 loops

LoopFrog 1 1 2 0 0.17
LoopFrog 2 2 1 0 0.255
CTA 1 1 1 0.206+
SatAbs+T 2 1 0 13.878

fft1k
7 loops

LoopFrog 1 2 5 0 0.356
LoopFrog 2 5 2 0 0.668
CTA 5 2 0 141.176
SatAbs+T 5 2 0 116.81

fft1
11 loops

LoopFrog 1 3 8 0 3.68
LoopFrog 2 7 4 0 4.976
CTA 7 4 0 441.937
SatAbs+T 7 4 0 427.355

fibcall
1 loop

LoopFrog 1 0 1 0 0.04
LoopFrog 2 0 1 0 0.016
CTA 0 1 0 0.335
SatAbs+T 0 1 0 0.309

fir
8 loops

LoopFrog 1 2 6 0 2.897
LoopFrog 2 6 2 0 8.481
CTA 6 2 0 2817.08
SatAbs+T 6 1 1 236.702+

insertsort
2 loops

LoopFrog 1 0 2 0 0.054
LoopFrog 2 1 1 0 0.063
CTA 1 1 0 226.446
SatAbs+T 1 1 0 209.12

jfdctint
3 loops

LoopFrog 1 0 3 0 5.612
LoopFrog 2 3 0 0 0.05
CTA 3 0 0 1.24
SatAbs+T 3 0 0 0.975

lms
10 loops

LoopFrog 1 3 7 0 2.863
LoopFrog 2 6 4 0 10.488
CTA 6 4 0 2923.12
SatAbs+T 6 3 1 251.031+

ludcmp
11 loops

LoopFrog 1 0 11 0 96.726
LoopFrog 2 5 6 0 112.808
CTA 3 5 3 3.256+
SatAbs+T 3 8 0 94.657

matmul
5 loops

LoopFrog 1 0 5 0 0.148
LoopFrog 2 5 0 0 0.086
CTA 3 2 0 1.969
SatAbs+T 3 2 0 2.152

minver
17 loops

LoopFrog 1 1 16 0 2.574
LoopFrog 2 16 1 0 7.664
CTA 14 1 2 105.26+
SatAbs+T 14 1 2 87.088+

qsort-exam
6 loops

LoopFrog 1 0 6 0 0.671
LoopFrog 2 0 6 0 3.96
CTA 0 5 1 45.918+
SatAbs+T 0 5 1 2530.58+

select
4 loops

LoopFrog 1 0 4 0 0.548
LoopFrog 2 0 4 0 3.561
CTA 0 3 1 32.599+
SatAbs+T 0 3 1 28.12+

Table 2. SNU real-time benchmark suite

Benchmark Method T NT TO Time

adpcm
11 loops

LoopFrog 1 8 3 0 59.655
LoopFrog 2 10 1 0 162.752
CTA 8 3 0 101.301
SatAbs+T 6 2 3 94.449+

bcnt
2 loops

LoopFrog 1 0 2 0 2.634
LoopFrog 2 0 2 0 2.822
CTA 0 2 0 0.79
SatAbs+T 0 2 0 0.299

blit
4 loops

LoopFrog 1 0 4 0 0.155
LoopFrog 2 3 1 0 0.047
CTA 3 1 0 5.945
SatAbs+T 3 1 0 3.672

compress
18 loops

LoopFrog 1 5 13 0 3.134
LoopFrog 2 6 12 0 33.924
CTA 5 12 1 698.996+
SatAbs+T 7 10 1 474.361+

crc
3 loops

LoopFrog 1 1 2 0 0.152
LoopFrog 2 2 1 0 0.208
CTA 1 1 1 0.328+
SatAbs+T 2 1 0 14.583

engine
6 loops

LoopFrog 1 0 6 0 2.397
LoopFrog 2 2 4 0 9.875
CTA 2 4 0 16.195
SatAbs+T 2 4 0 4.877

fir
9 loops

LoopFrog 1 2 7 0 5.993
LoopFrog 2 6 3 0 21.592
CTA 6 3 0 2957.06
SatAbs+T 6 2 1 193.911+

g3fax
7 loops

LoopFrog 1 1 6 0 1.565
LoopFrog 2 1 6 0 6.047
CTA 1 5 1 256.899+
SatAbs+T 1 5 1 206.847+

huff
11 loops

LoopFrog 1 3 8 0 24.368
LoopFrog 2 8 3 0 94.613
CTA 7 3 1 16.353+
SatAbs+T 7 4 0 52.323

jpeg
23 loops

LoopFrog 1 2 21 0 8.366
LoopFrog 2 16 7 0 32.9
CTA 15 8 0 2279.13
SatAbs+T 15 8 0 2121.36

pocsag
12 loops

LoopFrog 1 3 9 0 2.07
LoopFrog 2 9 3 0 6.906
CTA 9 3 0 10.392
SatAbs+T 7 3 2 1557.57+

ucbqsort
15 loops

LoopFrog 1 1 14 0 0.789
LoopFrog 2 2 13 0 2.059
CTA 2 12 1 71.729+
SatAbs+T 9 5 1 51.084+

v42
12 loops

LoopFrog 1 0 12 0 82.836
LoopFrog 2 0 12 0 2587.22
CTA 0 12 0 73.565
SatAbs+T 1 11 0 335.688

Table 3. PowerStone benchmark suite

Benchmark
group

Method T NT TO Time

244 loops
in 160 pro-
grams

LoopFrog 1 33 211 0 11.381
LoopFrog 2 44 200 0 22.494
CTA 34 208 2 1207.62+
SatAbs+T 40 204 0 4040.53

Table 4. Aggregated data on Verisec 0.2 suite

Columns 3 to 5 state the number of loops proven to terminate (T), possibly non-terminate (NT)

and time-out (TO) for each benchmark. Time is computed only for T/NT loops; ’+’ is used to

denote the resulting time for the cases where at least one time-outed loop was not considered.

10

Benchmark group Method T NT TO Time

SDV FLAT DISPATCH HARNESS
557 loops in 30 benchmarks

LoopFrog 1 135 389 33 1752.08
LoopFrog 2 215 201 141 10584.4
CTA 166 160 231 25399.5

SDV FLAT DISPATCH STARTIO HARNESS
557 loops in 30 benchmarks

LoopFrog 1 135 389 33 1396.01
LoopFrog 2 215 201 141 9265.81
CTA 166 160 231 28033.3

SDV FLAT HARNESS
635 loops in 45 benchmarks

LoopFrog 1 170 416 49 1323
LoopFrog 2 239 205 191 6816.37
CTA 201 186 248 31003.2

SDV FLAT SIMPLE HARNESS
573 loops in 31 benchmarks

LoopFrog 1 135 398 40 1510
LoopFrog 2 200 191 182 6813.99
CTA 166 169 238 30292.7

SDV HARNESS DRIVER CREATE
9 loops in 5 benchmarks

LoopFrog 1 1 8 0 0.135
LoopFrog 2 1 8 0 0.234
CTA 1 8 0 151.846

SDV HARNESS PNP DEFERRED IO REQUESTS
177 loops in 31 benchmarks

LoopFrog 1 22 98 57 47.934
LoopFrog 2 66 54 57 617.41
CTA 80 94 3 44645

SDV HARNESS PNP IO REQUESTS
173 loops in 31 benchmarks

LoopFrog 1 25 94 54 46.568
LoopFrog 2 68 51 54 568.705
CTA 85 86 2 15673.9

SDV PNP HARNESS SMALL
618 loops in 44 benchmarks

LoopFrog 1 172 417 29 8209.51
LoopFrog 2 261 231 126 12373.2
CTA 200 177 241 26613.7

SDV PNP HARNESS
635 loops in 45 benchmarks

LoopFrog 1 173 426 36 7402.23
LoopFrog 2 261 230 144 13500.2
CTA 201 186 248 41566.6

SDV PNP HARNESS UNLOAD
506 loops in 41 benchmarks

LoopFrog 1 128 355 23 8082.51
LoopFrog 2 189 188 129 13584.6
CTA 137 130 239 20967.8

SDV WDF FLAT SIMPLE HARNESS
172 loops in 18 benchmarks

LoopFrog 1 27 125 20 30.281
LoopFrog 2 61 91 20 201.96
CTA 73 95 4 70663

Table 5. Aggregated data on Windows device drivers

– CTA spends time 1) unwinding loop iterations, 2) discovering a ranking func-
tion for each unwound program fragment and 3) checking compositionality
of a discovered relation.

– Terminator spends time 1) enumerating paths through the loop and 2) dis-
covering a ranking function for each path.

The techniques can greatly vary in the time required for a particular loop
or program. CTA and Terminator give up on a loop once a they hit a path
on which ranking synthesis fails. LoopFrog gives up on a loop if it runs out
of transition invariant candidates to try. Given a large number of candidates,
this behavior results in an advantage for Terminator on loops that cannot be
shown to terminate (huff and engine in Table 3). However, we observe in almost
every other test that the LoopFrog technique is generally cheaper (often orders
of magnitude) in computational effort required to discover a valid termination
argument.

The comparison demonstrates some weak points of iterative analysis:

– Enumeration of paths through the loop can require many iterations or even
can be non-terminating for infinite state systems (as are many realistic pro-
grams).

11

– Ranking procedures often fail to produce a ranking argument; the same time
if successful, a simpler relation could be sufficient as well.

– CTA suffers from the fact that the search for a compositional transition in-
variant sometimes results in exponential growth of the loop unrolling depth.

LoopFrog does not suffer from at least the first of these problems: the
analysis of each loop requires a finite number of calls to a decision procedure.
The second issue is leveraged by relative simplicity of adding new abstract do-
mains over implementing complex ranking function methods. The third issue
is transformed into the generation of suitable candidate invariants, which, in
general, may result in a large number candidates, which slow the procedure
down. However, as we can control the ordering of the candidates by prioritizing
some domains over the others, simple ranking arguments can be expected to be
discovered early.

The complete results of the experiments as well as the LoopFrog tool are
available at www.verify.inf.usi.ch/loopfrog/termination.

6 Related Work

Although the field of program termination analysis is mature (the first results
date back to Turing [1]), recent years have seen a tremendous increase in practical
applications of termination proving. Two directions of research contributed to
the efficacy of termination provers in practice:

– the size-change termination principle (SCT) presented by Lee, Jones and
Ben-Amram [16], and

– transition invariants by Podelski and Rybalchenko [2],

where the former has its roots in previous research on termination of declara-
tive programs. Until very recently, these two lines of research did not intersect
much. The first systematic attempt to understand their connections is a recent
publication by Heizmann et al. [17].

6.1 Relation to size-change termination principle

Termination analysis based on the SCT principle usually involves two steps:

1. construction of an abstract model of the original program in the form of
size-change graphs (SC-graphs) and

2. analysis of the SC-graphs for termination.

SC-graphs contain abstract program values as nodes and use two types of edges,
along which values of variables must decrease, or decrease or stay the same. No
edge between nodes means that none of the relations can be ensured. Graphs
G which are closed under composition with itself are called idempotent, i.e.,
G;G = G.6

Lee et al. [16] identify two termination criteria based on a size-change graph:

6 In this discussion we omit introducing the notation necessary for a formal description
of SCT; see Lee et al. [16, 17] for more detail.

12

1. The SC-graph is well-founded, or
2. the idempotent components of an SC-graph are well-founded.

An SC-graph can be related to transition invariants as follows. Each sub-
graph corresponds to a conjunction of relations, which constitutes a transition
invariant. The whole graph forms a disjunction, resulting in a termination crite-
rion very similar to that presented as Theorem 1: if an SC-graph is well-founded
then there exists a d.wf. transition invariant. Indeed, Heizmann et al. identify
the SCT termination criterion as strictly stronger than the argument via transi-
tion invariants [17]. An intuitive argument is that SC-graphs abstract from the
reachability of states in a program, i.e., arguments based on SC-graphs require
termination of all paths irrespectively of whether those paths are reachable or
not. Transition invariants, on the other hand, require the computation of the
reachable states of the program. In this respect, our light-weight analysis is
closely related to SCT, as it havocs the input to individual loop iterations be-
fore checking a candidate transition invariant.

The domains of SC-graphs correspond to abstract domains in our approach.
The initial inspiration for the domains we experimented with comes from a recent
survey on ranking functions for SCT [18]. The domains #1–4 in Table 1 encode
those graphs with only down-arcs. Domain #5 has down-arcs and edges that
preserve the value. However, note that, in order to avoid costly well-foundedness
checks, we omit domains that have mixed edge types.

Program abstraction using our loop summarization algorithm can be seen as
construction of size-change graphs. The domains suggested in Sec. 4 result in
SC-graphs that are idempotent and well-founded by construction.

Another similarity to SCT relates to the second SCT criterion based on
idempotent SC-components. In [17], the relation of idempotency to analyses
using transition invariants was stated as an open question. We remark that there
is a close relation between the idempotent SC-components and compositional
transition invariants (Definition 5) used here and in compositional termination
analysis [7]. The d.wf. transition invariant constructed from idempotent graphs
is also a compositional transition invariant.

6.2 Relation to other research using transition invariants

The work in this paper is a continuation of the research on proving termination
using transition invariants initiated by Podelski and Rybalchenko [2]. Methods
developed on the basis of transition invariants rely on an iterative, abstrac-
tion refinement-like construction of d.wf. transition invariants [3, 4, 6, 7]. Our
approach differs in that it aims to construct a d.wf. transition invariant without
refinement. Instead of applying ranking function discovery for every non-ranked
path, we use abstract domains that express ranking arguments for all paths at
the same time.

Chawdhary et al. [10] propose a termination analysis using a combination of
fixpoint-based abstract interpretation and an abstract domain of disjunctively
well-founded relations. The abstract domain they suggest is of the same form

13

as domain #5 in Table 1. However, their method performs an iterative com-
putation of the set of abstract values and has a fixpoint detection of the form
T ⊆ R+, while in our approach it is sufficient to check T ⊆ R, combined with
the compositionality criterion. This allows a richer set of abstract domains to be
applied for summarization, as the resulting satisfiability problems are low-cost.

Dams et al. [19] present a set of heuristics for inferring candidate ranking
relations from a program. These heuristics can be seen as abstract domains in
our framework. Moreover, we also show how candidate relations can be checked
effectively using SAT/SMT.

Cook et al. [20] use relational predicates to extend the framework of Reps et
al. [21] to support termination properties during computation of inter-procedural
program summaries. Our approach shares a similar motivation and adds termi-
nation support to loop summarization based on abstract domains. However, we
concentrate on scalable non-iterating methods to construct the summary while
Cook et al. [20] rely on a refinement-based approach. The same argument applies
in the case of Balaban et al.’s framework [22] for procedure summarization with
support for liveness properties.

Berdine et al. [11] use the Octagon and Polyhedra abstract domains to dis-
cover invariance constraints sufficient to ensure termination. Well-foundedness
checks, which we identify as an expensive part of the analysis, are left to iterative
verification by an external procedure as in the Terminator algorithm [4] and
CTA [7]. In contrast to these methods, our approach relies on abstract domains
that yield well-founded relations by construction and therefore do not require
explicit checks.

7 Conclusion and Future Work

In this paper, we present an extension to a loop summarization algorithm such
that it correctly handles termination properties while constructing a loop-free
program over-approximation. To that end, we employ abstract domains that
encode transition invariants, i.e., relations over pre- and post-states of the sum-
marized loop. Termination of loops may be established at the same time, by
checking disjunctive well-foundedness of the discovered transition invariants. We
demonstrate the practicality of our approach on a large set of benchmarks in-
cluding open-source programs and Windows device drivers.

Further research includes an investigation of abstract domains that allow
effective summarization with termination support. We are especially interested
in encoding forms of Size-Change-Graphs into schemata for generating candidate
invariants.

References

1. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, IEEE Computer
Society (2004) 32–41

14

2. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: SAS. Volume 3672 of LNCS., Springer (2005) 87–101

3. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, ACM (2006) 415–426

4. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model
checking with abstraction refinement. In: PADL, Springer (2007) 245–259

5. Cook, B., Kroening, D., Ruemmer, P., Wintersteiger, C.: Ranking function syn-
thesis for bit-vector relations. In: TACAS, Springer (2010) 236–250

6. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: International Conference
on Computer-Aided Verification (CAV). Volume 6174 of LNCS., Springer (2010)

7. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using abstract transformers. In: ATVA. Volume 5311 of LNCS.,
Springer (2008)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
(1977) 238–252

9. Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions.
In: Programming Languages and Systems. Volume 4960 of LNCS. Springer (2008)
148–162

10. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance anal-
yses from invariance analyses. SIGPLAN Not. 42 (2007) 211–224

11. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.:
Loopfrog: A static analyzer for ANSI-C programs. In: Automated Software Engi-
neering, IEEE (2009) 668–670

12. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: TACAS. LNCS, Springer (2005) 570–574

13. Scott, J., Lee, L.H., Arends, J., Moyer, B.: Designing the low-power M*CORE
architecture. In: Proc. IEEE Power Driven Microarchitecture Workshop. (1998)

14. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: ASE ’07, ACM Press (2007) 389–392

15. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, Univ. Math. Lab., Cambridge (1949) 67–69

16. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, ACM (2001) 81–92

17. Heizmann, M., Jones, N., Podelski, A.: Size-change termination and transition
invariants. In: Static Analysis. Volume 6337 of LNCS. Springer (2011) 22–50

18. Ben-Amram, A.M., Lee, C.S.: Ranking functions for size-change termination II.
Logical Methods in Computer Science 5 (2009)

19. Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of
ranking functions. In: Workshop on Advances in Verification. (2000) 1–8

20. Cook, B., Podelski, A., Rybalchenko, A.: Summarization for termination: no re-
turn! Formal Methods in System Design 35 (2009) 369–387

21. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Symposium on Principles of programming languages
(POPL), ACM (1995) 49–61

22. Balaban, I., Cohen, A., Pnueli, A.: Ranking abstraction of recursive programs.
In: Verification, Model Checking, and Abstract Interpretation (VMCAI). Volume
3855 of LNCS., Springer (2006) 267–281

15

