Automated Synthesis and Analysis of Switching Gene
Regulatory Networks™

Yoli Shavit®?, Boyan Yordanov®, Sara-Jane Dunn®, Christoph M.
Wintersteiger?, Tomoki Otani?, Youssef Hamadi®, Frederick J. Livesey?,
Hillel Kugler”®

*Uniwversity of Cambridge, UK
b Microsoft Research
¢Bar-Ilan University, Israel

Abstract

Studying the gene regulatory networks (GRNs) that govern how cells change
into specific cell types with unique roles throughout development is an active
area of experimental research. The fate specification process can be viewed as
a program prescribing the system dynamics, governed by a network of genetic
interactions. To investigate the possibility that GRNs are not fixed but rather
change their topology, for example as cells progress through commitment, we
introduce the concept of Switching Gene Regulatory Networks (SGRNs) to
enable the modelling and analysis of network reconfiguration. We define the
synthesis problem of constructing SGRNs that are guaranteed to satisfy a
set of constraints representing experimental observations of cell behaviour.
We propose a solution to this problem that employs methods based upon
Satisfiability Modulo Theories (SMT) solvers, and evaluate the feasibility
and scalability of our approach by considering a set of synthetic benchmarks
exhibiting possible biological behaviour of cell development. We outline how
our approach is applied to a more realistic biological system, by considering
a simplified network involved in the processes of neuron maturation and fate
specification in the mammalian cortex.
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Self-Modifying Code, Cell Fate, Mammalian Cortex.

1. Introduction

Gene regulatory networks (GRNs) are used to describe how individual
genetic components regulate each other to determine gene expression pat-
terns and, consequently, cellular decision-making. Computational modelling
of GRNs (Davidson et al.| 2002; Le Novere, |2015) can be used effectively to
complement experimental work, to elucidate and summarise a mechanistic
understanding of a system precisely, to check if models reproduce experi-
mental data, to explore new hypotheses, and to make predictions that can
then be tested experimentally. Despite the broad spectrum of languages and
formalisms now available to model GRNs, which may be gainfully used to
study the cellular decision-making that occurs during differentiation - the
process through which cells take on a specific role - the majority hold the
assumption that the network topology is fixed throughout. Recent findings
suggest that differentiation might arise as the accessibility of binding sites
required for genetic regulation change (Stergachis et al., 2013)), essentially
enabling and disabling interactions in the GRN (Yosef et al., 2013).

To capture these phenomena, we introduce the concept of a Switching
Gene Regulatory Network (SGRN), which is a modelling language and frame-
work for the analysis and synthesis of reconfiguring GRNs. An SGRN is con-
structed to incorporate knowledge of network topology and to reproduce and
explain experimental observations of system dynamics by integrating known
gene expression measurements and biological hypotheses. At the core of the
approach is a synthesis algorithm, which can decide algorithmically whether
there exists an SGRN that is guaranteed to satisfy given experimental ob-
servations, and a set of assumptions on the possible cell types, switches, and
interactions, which are specified as constraints. Toward this goal, we for-
malise our modelling framework and provide an encoding of SGRNs together
with bounded temporal(-logic) constraints representing known experimental
data, within a framework based on Satisfiability Modulo Theories (SMT)
solvers. This approach naturally builds upon and extends our previous work
in the area, in which we propose various techniques for analysis and syn-
thesis of fixed (non-switching) GRNs, and that was successfully employed to
uncover an essential pluripotency program for embryonic stem cells (Dunn
et al.,[2014)) and a range of other biological programs (Yordanov et al., 2016).



We evaluate the performance of our approach on a set of synthetic bench-
marks in terms of running time, accuracy, and precision and we show that
our method is scalable and that it reliably recovers the changes taking place
in the network topology. Finally, we outline a case study of a particular
SGRN that is used to describe cell-fate decision making and maturation of
neurons within the mammalian cortex.

2. Materials and Methods

In this paper we introduce SGRNs as an extension of Boolean Networks
(BNs) (Kauffman|, [1969). The main ideas do, in principle, generalise to less
abstract formalisms such as qualitative networks, chemical reaction networks
or differential equation models, but here we focus on SGRNs as an extension
of Boolean networks.

BNs are a class of GRN models that are Boolean abstractions of ge-
netic systems, i.e., every gene is represented by a Boolean variable specifying
whether the gene is active or inactive (on or off). The concept of Abstract
Boolean Networks (ABNs) (Dunn et al., 2014) was introduced to allow the
representation of models with network topologies and dynamics that are ini-
tially unknown or uncertain. Those models were then used to investigate
decision-making in pluripotent stem cells. In the following, we briefly review
the relevant definitions (Dunn et al. 2014; Yordanov et al., [2016)), which serve
as a basis for the modelling approach described in the following sections.

We begin to describe the formalisation by letting G be a finite set of
genes. Let B = {T, L} be the Boolean domain and let B" be all vectors of n
Booleans. Let D be a set of directed edges between elements of G, i.e., D C
G x G xB. To specify the sign of an interaction, we require an additional label
on each regulation activity, which is either T for positive or L for negative
activities, and we attach one such label to each edge within a network, thus
obtaining a set of labelled interactions £ C DxB = GxGxB xB. Let g and
¢ be genes from G. We call g an activator of ¢’ iff (g,¢', T) € E, a repressor
iff (9,4, L) € E, and a regulator iff it is either an activator or a repressor,
i.e., when {(¢9,¢, T)} U{(g9,¢, L)} N E # (. In line with the adoption of a
Boolean abstraction of genetic states, we define the state space of a system
as Q = BI¢l. For a given state ¢ € Q and a gene g € G, we denote by ¢(g)
the state of g in q.

Each gene is associated with an update function f; with a signature
fg © @ — B defining its dynamics. For synchronous updates, the dy-



namics of the system are defined in terms of the update functions of all
genes applied at each transition (time step), where, given a current state
g and next state ¢/, we always have that /\QGG ¢ (9) = fy(g). In this pa-
per, we focus on synchronous semantics, but if so desired, asynchronous
semantics are incorporated by requiring that at each transition the update
function of only one, non-deterministically chosen gene, is applied, while the
value of all other genes remains unchanged. Formally, for the case of asyn-
chronous updates, given a current and next state ¢,q¢" € @, we require that

Ve (q’(g) = Jo(@) N Nyeg.gze @(9) = q(g’)) . Our prototype implementa-
tion of the synthesis framework and algorithms supports both synchronous
and asynchronous semantics.

Dunn et al. (Dunn et al. 2014) propose and define a set of 18 biologi-
cally plausible update function templates, dubbed regulation conditions and
this notion was refined and explained in detail via illustrative biological case
studies in Yordanov et al. (Yordanov et al. 2016). Introducing these func-
tion ‘templates’ aims to reduce the number of Boolean functions that need
to be considered (thus simplifying analysis) while still maintaining and em-
phasising biological and experimental plausibility. Note that these functions
preserve the concepts of activators and repressors, thus allowing the integra-
tion of known experimental evidence that supports such regulation, but they
abstract from the exact numbers and types of activators (repressors) that
need to be present (absent) for a gene to turn on (off).

One constraint that is imposed on the regulation conditions is monotonic-
ity, where the increased availability of an expressed activator does not lead
to the inactivation of a gene, i.e., if a gene is expressed in ¢’ when only some
of its activators are expressed in ¢, then it must also be expressed in ¢ if
all its activators are expressed in ¢ and there is no change in the presence
of repressors. Similarly, if a gene is not expressed in ¢’ when only some of
its repressors are expressed in ¢, then it cannot be expressed in ¢ if all of
its repressors are expressed in ¢ and there is no change in the presence of
activators.

To capture possible uncertainty and partial knowledge of the precise net-
work topology, we allow some interactions to be marked as possible (denoted
by the set E’), each of which could be included in a synthesised concrete
model (a model where all interactions are known, i.e., there are no possible
interactions). Thus, in terms of network topology, this means a set of Pl
concrete models, each of which corresponds to a unique selection of possible



interactions. Additionally, a choice of several possible regulation conditions
for each gene is taken into consideration, leading to the following definition:

Definition 1 (Abstract Boolean Network (ABN)). An abstract Boolean
network (ABN) is a four-tuple (G, E, E*, R), where G is a finite set of genes,
E CGxGxBxBis a set of definite (positive and negative) and directed
interactions between them, E7 : G x G xB xB is a set of possible interactions
and R = {R, |Vg € G}, where R, specifies a (non-empty) set of admissible
requlation conditions for gene g (Dunn et all, |2014; | Yordanov et al., |2016).

An ABN is transformed into a concrete Boolean network by selecting a
subset of the possible interactions to be included (or excluded) and assigning
a specific regulation condition to each gene; thus, for a concrete Boolean
network, £ = () and Vg € G . |R,| = 1. The semantics of such a concrete
model is defined in terms of a transition system 7~ = (Q, T'), where Q = Bl is
the state space and 7' is a transition relation defined in terms of the predicate
T :Q xQ — B. The semantics of the (synchronous) transition system is
then given by

Va,d € Q. T(q,q) < /\ ¢'(9) = Rq(q)-

geG

A finite trajectory of length k is defined as a sequence of states qo,q1, - - - ,qx_1
where Ag_;. - @& € Q ANT(gi—1,¢;). The semantics of an ABN can be un-
derstood in terms of the choice of possible interactions and the choice of a
regulation condition for each gene, together with the transition system T
resulting in a concrete model. Intuitively, an ABN therefore captures the se-
mantics of all trajectories of all of the concrete Boolean networks it describes.

A set of experimental observations that a BN must be able to satisfy are
encoded as predicates over system states, which limits the feasible choices
of possible interactions and regulation conditions yielding consistent mod-
els (networks that are guaranteed to satisfy all observations and network
constraints). For instance, an ezperiment in which genes g and ¢’ are ob-
served to be initially active and are inactive at step k is formalised by
a constraint requiring the existence of a trajectory qq,...,qr_1 such that
q00(9) AN q(d) N —qr-1(9) A =qx_1(¢'). The approach developed and de-
scribed in (Dunn et al. 2014; Yordanov et all 2016)) allows GRN synthe-
sis for non-switching networks: given an ABN and a set of experiments,
find a choice of interactions and regulation conditions that guarantees that



the resulting concrete BN is consistent with all experimental observations.
The synthesis algorithm constructs concrete, consistent models if they exist,
or formally proves no solution exists (empty solution set). The approach
is implemented in the Reasoning Engine for Interaction Networks (RE:IN,
see http://rein.cloudapp.net). RE:IN also supports editing and visuali-
sation of ABNs, experimental observations and solutions, an it enables the
user to make predictions based on the set of all consistent concrete models.

An alternative interpretation of ABNs in terms of sets of finite-state ma-
chines (FSMs) may be helpful to consider. To this end we can define a BN to
be a non-deterministic state machine with state space @ := (go, ..., gn_1) =
B", a set of initial states )y C @, a set of final states F' C (), and a transition
function 0 that is composed of Boolean update functions f, for each gene.
Note that, unusually, we use a set of initial states instead of a single initial
state qp € Q.

Definition 2 (Boolean Network (alternative)). A Boolean Network of
n genes is a non-deterministic finite-state machine with

e finite state-space () = B",

e empty input alphabet,

o set of initial states QQ; C @,

e set of final states F' C @, and

e transition relation 0 : Q X Q = (q,(R1(q), ..., Rn(q))), for all ¢ € Q

and a fized (Boolean) regulation function R; for each gene g;.

BNs according to this definition are non-deterministic, as they have more
than one initial state. Depending on the context (and especially if asyn-
chronous semantics are required), it may also be helpful to consider non-
deterministic transition relations ¢, which means that

39.¢,¢"€Q . (q,¢) €N (q,4") € dNg #q".

If such non-deterministic transitions are permitted, then it is easy to con-
vert the set of initial states ); into a unique initial state ¢* by adding an
initialisation transition to J, e.g., via

& =6U{(¢",q) | g€ Qi}.
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Definition 3 (Abstract Boolean Network (alternative)). An Abstract
Boolean Network (ABN) is a Boolean network with set of genes G with
|G| = n, state-space @, initial states Qo, final states F', requlation function
sets R; C P(B" x B) , and further equipped with restrictions on interactions
1= ]def U Ipos with

ir € I := (g1, g2, €9, POS),

where g1, 92 € G, reg € {T, L}, pos € {T, L}, which indicates an interaction
between genes g1, go which is either positive or negative (according to reg) and
possible or definite (as specified by pos).

Each instantiation of an ABN to a particular choice of possible interac-
tions and to a concrete regulation function for each of the genes, uniquely
defines ¢ in the straight-forward way. Conversely, the introduction of possi-
ble interactions in ABNs means that every ABN represents a set of concrete
FSMs, where each previously possible interaction is either present or not
present. Thus, the sets G and [ define the abstract network topology which
is a set of 2/'7s| concrete unique FSMs, in which all interactions and regula-
tion functions are definite (and thus part of ¢).

3. Results

In this section we describe a formal framework for specifying switching
gene regulatory networks and the associated synthesis problem. We explain
how synthesis of switching networks is algorithmically solved using SMT-
based methods, and we evaluate the performance of a prototype implemen-
tation of our algorithms on synthetic benchmarks. Finally, we apply the
method to a simplified network involved in the processes of neuron matura-
tion in the mammalian cortex.

3.1. Switching Gene Regulatory Networks

We propose an extension of the ABN formalism, where transitions be-
tween unique cell types, characterised by potentially different network topolo-
gies, are directly supported.

Let C denote a set of cell types sharing a set of genes G and regulation
conditions R. Each cell type ¢ € C is modelled as an ABN (G, E,, E’, R),
where the set of definite interactions E. and possible interactions E’ are al-
lowed to differ between cell types. Note that, while the network topology
may change between different cell types, we assume that the dependencies as
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specified by regulation conditions remain consistent across cell types. Mod-
ification of these dependencies, if desired, or when sufficient experiments
suggest it, is possible as a modification to the ABN, but that modification
spans across cell types.

Arbitrary transitions between different cell types are not desired or plausi-
ble in many biological systems. For example, two distinct cell types ¢, ¢ € C
may represent a progenitor cell ¢ and a differentiated cell ¢ that is derived
from c¢. While the progenitor could differentiate into a cell type different
from ¢, the reverse does not usually occur under normal conditions. For
each cell ¢ € C, we capture this information using the (non-empty) subset
D. C C of all possible cell types that ¢ differentiates into directly. In order to
capture mechanistic details within the model, our framework also supports
the addition of guards, encoded as state predicates, to further constrain cell
type switches. In the absence of restrictive guards, switching between cell
types is represented as a non-deterministic choice (when |D.| > 1), without
explicitly modelling either the mechanism or preconditions on the system
state required for such a switch.

Using these concepts, we define SGRNs as follows:

Definition 4 (Switching Gene Regulatory Network (SGRN)). A
Switching Gene Regulatory Network is a tuple (G, C, D,, E., E!, R), where

o (G is the finite set of genes,

e (' is a finite set of cell types,

D, C C' is the set of cell types that cell type ¢ can differentiate into,
o E.:GxGxBxB are the set of definite interactions for cell type c,

E!: G x G x B x B is the set of possible interactions for cell type c,
and

R = {R,|g € G}, defines admissible requlation conditions for each
gene g.

Figure [I| shows an SGRN with 3 cell types: C = {Cy, C;,C5}, and 6
genes: G' = {go,...,g5}. In this example, a (progenitor) cell type, Cy, may
change into cell types C or Cy, by reconfiguring its network, such that D¢, =
{Cy, C1, Cy}, while Cy and Cy cannot switch their network (thus Do, = {C4}

8



and D¢, = {Cy}). For each cell type, edges between genes appear in solid
(dashed) lines for definite (possible) interactions respectively. Genes appear
in dashed nodes to indicate that an I, permits multiple regulation conditions
for gene g.

Figure 1. An SGRN with 3 cell types (C0-C2) and 6 genes (g0-gb), illustrating
a typical setting where one cell type (C0) can maintain its identity (self-loops)
or differentiate into other cell types by switching its interactions. Edges between
genes represent regulatory interactions, with a bar representing repression and
an arrow representing activation, and solid (dashed) lines for definite (possible)
interactions, respectively.

As in Section [2| (Materials and Methods), the semantics of SGRNs is
defined in terms of a transition system 7 = (Q,T) with the extended state
space Q = BIS! x C. For a given state ¢ € Q, the cell type of the system at
that state is denoted as g.. Let }A%g € R, be the specific regulation condition
selected for each gene g € G and note that this is independent of ¢, i.e., it
is the same for all cell types. The transition relation 7' : Q x @ — B for
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synchronous updates is now adjusted to

¥e.d € Q. T(q.q) = N [qc =k — (qé €D A\ dl9) = Rg(q)>] - (1)

keC g€G

Intuitively, Equation[I]captures the fact that all genes are updated accord-
ing to the selected regulation conditions Rg and the regulators corresponding
to the cell type ¢ in the current state ¢. In the next state ¢/, the cell type can
be updated (non-deterministically) to one of the possible cell types D. C C
that ¢ is permitted to transition into. As for ABNs, given an assignment
of the possible interactions E’ for each cell type ¢, and a specific regulation
condition Rg for each gene g, Equation [1{allows us to define finite trajectories
of length k in the resulting concrete SGRN models as a sequence of states

0, q1, - - -, Gr—1 Subject to /\0<i<k : T(Qzel, qi>'

3.2. SGRN model synthesis

We are interested in finding concrete SGRN models that are consistent
with a specified set of experimental observations. In this section, we for-
malise this as a synthesis problem and present the details of our solution and
prototype implementation.

An abstract SGRN (G, C, D, E., E’, R) is transformed into a concrete
SGRN with E’ = () by selecting a specific regulation condition for each gene
g, thus fixing |R,| = 1, and by instantiating a concrete set of interactions
EZ C E! to be included for each cell type c. Let m, : Q@ — B denote a
predicate that recognises a (partial) state ¢ (and no others), i.e., m,(s) means
that the gene states and the cell type in s are exactly as in q.

Definition 5 (Experiment). An experiment & is a set of constraints that
describe experimental observations based on a (partial) trajectory t = qo, . . .,
Q-1 with T = Nocjop Tq, 0f length at most k. Thus, £ = {(m,n)}, where
n <k. -

We write u F € when trajectory u satisfies experiment &, i.e., when m;(u).
More complex expressions may also be constructed as part of an experiment
by combining terms (7, n) using the Boolean operators A, V, =, <, -, etc.

The main problem we consider in this paper is the following (see Figure
for a concrete example):
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Problem 1 (Lineage Synthesis). Given an SGRN (G,C, D, E., E! R)
and a finite set of experiments &y, ..., Em, find an assignment E’ to the pos-
sible interactions E’ for each cell type ¢ and a single regulation condition R,

for each gene g such that there exists a trajectory t; of the resulting concrete
model with t; F & for 0 <i < m.

Experiment 1 Experiment 2| ... [Experiment m
Time |6 | 4y | s 10 0| 2|10|..[0]2]10
step
Cell [ CO[CO|[CO|CL|CO| ? |C2|..[CO|CO|C2

Figure 2. A lineage synthesis problem. The SGRN from Figure [I] and a finite
set of experiments define a lineage synthesis problem. A solution for this problem
includes the assignment of definite interactions for each cell type and the choice of
a single regulation condition for each gene.

Given an SGRN (G, C, D, E., E?, R) we encode the choice of possible in-
teractions B’ for each cell type ¢ using a unique Boolean choice variable for
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each interaction, or more conveniently, as a bit-vector using the SMT theory
of quantifier-free bit-vectors (QF_BV). Additionally, a single regulation con-
dition Rg from the set of admissible conditions R, must be selected for each
gene g. We encode this as the synthesis of a bit-vector (or bounded integer)
‘coefficient’” on each gene that selects one out of the regulation conditions as
proposed by Dunn et al. (Dunn et al., 2014)).

The choice variables for possible interactions of each cell type and reg-
ulation conditions for each gene allow us to consider the transition system
T = (Q,T) as defined in Section , which represents a given concrete BN
for each cell type. The state space of T' is always finite since both the num-
ber of genes G and the number of cell types C' are finite. For a given state
q € @, the component of the state space describing the state of all genes is
encoded as a single bit-vector variable. In our prototype implementation, we
represent the cell type component of a state ¢. using a ‘one-hot’ encoding,
where ¢. € BI°! with the guarantee that the cardinality of ¢, for any state ¢ is
exactly 1. This allows us to represent the entire state as individual Boolean
variables or as a single bit-vector that combines its components.

For further analysis of the dynamics of SGRNs, we adopt a simple bounded
model checking (BMC) approach (Biere et al.; [1999) and we ‘unroll’ the tran-
sition relation T' to define a trajectory ¢; for each experiment &; (see Prob-
lem , for which the corresponding experimental observations from &; are
asserted. Note that while a separate trajectory ¢; is used for each experiment
&;, we do not require these trajectories to be unique or non-overlapping, i.e.,
it is possible that one trajectory ¢t = t; = t; satisfies the constraints of both
experiments &; and &;.

Finally, we employ an SMT solver to determine the satisfiability of all
constraints we encode (we use the SMT solver Z3 (de Moura and Bjgrner,
2008; |[Yordanov et al., 2013))). Further, we exploit the fact that SMT solvers
usually produce an assignment of all the variables used in the encoding of
the problem, which is presented as a certificate of the satisfiability of all
constraints. When such an assignment (also referred to as a ‘model” in this
context) is found, we extract the possible interactions EZ that were selected
for each cell type and the regulation conditions Bsg selected for each gene.
In addition, since each trajectory t; was represented explicitly as part of
the problem, the exact sequence of states is recovered from the solution, to
serve as an example demonstrating exactly how the SGRN reproduces the
behaviour observed in each experiment. In addition to the sequence of gene
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expression values at each time point, this information also reveals the cell
types along executions of the system, allowing for further investigation of the
cellular differentiation processes.

3.8. Synthetic Benchmarks

In order to test our approach and systematically evaluate its performance
we require benchmarks of lineage synthesis problems for SGRNs with differ-
ent numbers of genes and cell types. This is achieved by producing synthetic
problems, following the main steps summarised in Figure 3] and described
below.

cell: cO .. cl .. cl cell: 1
g0: 1. 0 . 0 g0: 0
gl: 0 . 1. 0 gl 0
g2: 0 . 0 . 1 g2: 1
g3: 1. 1. 1 g3: 1
cell cO .. c2 .. c2

g0: 1.. 0.. 0 [

gl: 0 . 1. 1

g2: 0 . 1. 1

g3: 1. 1. 0

(a) Random SGRN is (b) Some trajectories (c) Lineage synthesis
generated. are simulated. problem is set up.

Figure 3. The three steps for generating in-silico lineage synthesis problems
involve: (a) Randomly generating a concrete SGRN, where all interactions are
definite and a single regulation condition is allowed for each gene. (b) Generating
trajectories of the concrete SGRN model from (a). This essentially amounts to
simulation, which is possible since the model does not include any uncertainty.
(c) Generating a lineage synthesis problem with partial information about the
interactions in the system (encoded as an SGRN) and the trajectories it produces
(encoded as experimental observations).

3.3.1. Benchmark Design

Cell types are defined by directed networks with a scale-free topology (the
degree of the vertices follows a power-law distribution), which is a common
feature of GRNs and other biological networks (Albert} 2005), with the ex-
ponent of the degree distribution set to 2 (for both in-degree and out-degree
distributions). Interactions are labelled with either a positive or negative
sign, such that each gene has at least one activator. This is in keeping with
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the assumption that, by default, genes are repressed in higher organisms,
and must be ‘switched on’ to be expressed and behave as regulators of their
target genes (Phillips, [2008)). A regulation condition is randomly assigned
to each gene from a set of 16 out of the 18 regulation conditions defined by
Dunn et al. (Dunn et al., 2014).

For a given model with m differentiated cell types, n genes, and a progen-
itor cell type ¢g, we generate 2 - m - n trajectories of length K = 11 starting
at ¢o with a gene state configuration j, and switching to cell type ¢; at a ran-
domly selected time point s, fort=1,....,m, j=1,....2nand 1 < s < K.
In order to create the set of 2n initial gene state configurations, we randomly
select 2n — 2 integer values in the range (0,2" — 1) (exclusive) and add the
values 0 and 2™ — 1, which represent the extreme configurations of the sys-
tem. System states are encoded as bit-vectors of size |G| + |C|, where the
k' position in the leading |G| bits represents the state of the k' gene, while
the remaining |C| bits encode the cell type.

To construct an instance of the lineage synthesis problem, each model
(generated as described above) is used to produce an SGRN and its trajec-
tories are encoded as experimental observations. We assume no information
about the exact regulation conditions available and, therefore, all 16 choices
are allowed for each gene. Let E* denote the interactions of cell type c in
the ‘true’ model and E* = U.ccE’ denote the interactions appearing in any
cell type. We construct the SGRN by assigning a small proportion (20%)
of E* as definite for cell type ¢ (representing known interactions) and mark-
ing the rest of E* as possible, which defines the sets E. and E’ respectively
(Figure (4)).

Each trajectory is then used to generate an experiment with the gene
states observed at each time step, and the cell type observed only at the
start and at the end of the experiment (time steps 0 and 10, respectively),
thus the exact timing when the progenitor cell switches to a differentiated
cell type is not known. In total, this amounts to 2-m-n experiments included
in a lineage synthesis problem of m cells and n genes.

3.3.2. Synthesis Evaluation

We demonstrate our technique on benchmarks of lineage synthesis prob-
lems with 1-7 cell types and 4-10 genes, generated as described above. For
each problem we record the running time required to solve the synthesis
problem and we evaluate solutions by means of accuracy and precision in
relation to the ‘hidden’ true model from which each problem was generated.
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(a) True SGRN (b) Hypothesised (c) Synthesised

Figure 4. A true, a hypothesised, and a synthesised progenitor cell type in an
SGRN with 6 genes (g0-gb) and 3 cell types. The true cell type (a) was gen-
erated with a scale-free topology. The union of all cell types in the SGRN was
used to create the hypothesised cell type (possible interactions appear as dashed
lines) with a small proportion of its true interactions known (solid lines). Genes
appear with dashed circles to indicate that their regulation condition is not fixed.
The synthesised cell type is part of our solution for a lineage synthesis problem
generated for this SGRN and recovers the true cell type with the exception of the
negative interaction from gb to g4.

Let E* denote the ‘true’ interactions of cell type ¢, E. denote the definite
interactions and E’ denote the possible interactions of the corresponding
SGRN cell type. Let E. denote the synthesised interactions obtained as a
result of selecting the possible interactions E?, where E, = E. U E? . A
True Positive is an interaction that is in EZ and in EY. A True Negative is
an interaction that is not in EZ and not in E%. Note that we evaluate the
synthesis of only those interactions that were possible in the SGRN since
definite interactions will always be part of the synthesised model. A Fulse
Positive is an interaction in EZ that is not in B and a False Negative is an
interaction that is not in Eg and is in £7. The precision of a solution for a

. . TP . TP+TN
given cell type is then defined as =3 and its accuracy as ppprrNTEN

with TP, TN, FFP and FN, the nuJ;rI;{)Der of True Positives, True Negatives,
False Positives and False Negatives, respectively. The total precision and
accuracy of a solution is the mean precision and accuracy across all cell
types in the problem.

The results of our evaluation (Figure 5 a,b) show that our approach suc-
cessfully recovers hidden topologies of SGRNs, achieving 0.81 accuracy and

0.78 precision (on average, across 2-7 cell types and 1-10 genes). As evident
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from the heat-maps in Figure [5| a,b, cell types are synthesised with good
accuracy across problems (17% with accuracy > 0.9, 86% of cases with ac-
curacy > 0.7 and all problems with accuracy > 0.6) and with good precision
in the majority of cases (71% of cases with precision > 0.7). For our bench-
marks, the performance seems to be independent of the number of cells or
genes. The running time of our synthesis is also feasible for the SGRNs un-
der consideration, with all problems in the benchmark set solved in under
an hour on a personal computer (Intel Core i3-4010U 1.7 GHz, 4GB RAM,
Windows 8.1 64-bit OS) and with an average running time of 730.25 seconds

(Figure [Bk).

1.0

| 3500

00 4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10 0.0
Number of genes Number of genes Number of genes

(a) Accuracy (b) Precision (c¢) Running Times (sec.)

Figure 5. Heat-maps of experimental results for a benchmark of lineage synthesis
problems with 1-7 cells and 4-10 genes. Darker pixels indicate higher accuracy
(a) and precision (b), while lighter pixels indicate poorer performance. Running
times (c) are indicated on a colour scale from white to black, with darker pixels
for longer running times.

In order to test further whether our approach is useful for alternative
biological scenarios, where environmental conditions induce changes in the
topology of the network, we repeat our evaluation for benchmark problems
designed to represent this behaviour. These problems are generated as de-
scribed above, with the exception that all cell types cannot change their
identity (i.e., no progenitor cell is defined). This aims to represent a system
in which cells are cultured in different conditions (for example, in the pres-
ence or absence of a nutrient or signal). In this setting our approach recovers
cell topologies with 0.92 accuracy and 0.94 precision (on average, across 2-7
cell types and 1-10 genes) in an average running time of 158.57 seconds.
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3.4. Illustrative case study

Next, we illustrate how our approach is applied to real biological prob-
lems, by considering the process of neuron maturation and cell fate specifica-
tion in the mammalian cortex. Neurons within each layer of the mammalian
cortex acquire specific projection identities, which are controlled by key regu-
latory genes. Here we focus on four key genes involved in this process: Fezf2,
Satb2, Ctip2 and Tbrl. Srinivasan et al. (Srinivasan et al., 2012)) study a
static network specifying projection fates by generating double mutants of
Fezf2, Satb2, Ctlip2 - phenotypes in which these genes are knocked out -
and by integrating previous experimental observations. They further sug-
gest a network model summarising the mechanistic understanding, which is
illustrated here in Figure [6]

Using our SGRN approach, we re-frame the problem of deriving unique
networks for the different cell types under consideration. As illustrated in
Figure[f|(a), we define four possible cell states, and the allowable cell switches:
a common progenitor cell, P, can switch to either an upper layer (UL) cell, a
Layer 5 (L5) or Layer 6 (L6) cell, which correspond to the different projec-
tion identities. Next, using our ABN synthesis approach, we attach precise
semantics to networks such as the one described in Figure [6] by selecting
which of the interactions are instantiated in cells of the different layers, and
by choosing a regulation condition that determines the expression of a gene
based on activity of its regulators. By encoding the interactions identified
by Srinivasan et al. (Srinivasan et al., 2012) as possible in each layer, as
illustrated in Figure (b), we successfully synthesised models that generate
the corresponding callosal, sub-cerebral and corticothalamic fates using the
synthesis algorithm described earlier.

Crucially, if we instead require all interactions to be present in all cell
types, which amounts to disallowing switching, no models can be identified
that are consistent with (some) experimental observations. An alternative
mechanism might allow differences between the layers to emerge as a result
of non-determinism and such behaviour can be modelled by allowing asyn-
chronous updates in the Boolean network. While this allows more flexibility
in model behaviour, interestingly, for this system no consistent models are
found even when considering asynchronous updates. For this specific model
and assumptions, this illustrates how switching provides cells with more flexi-
bility to regulate gene expression patterns and acquire specific fates that may
be harder to a achieve with either a ‘rigid’ static network topology, or only
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Figure 6. A network of genetic interactions specifying neuron projection fates
in the wild type cortex, from Srinivasan et al., 2012. Arrows denote positive
interactions, while bars denote inhibitory interactions. The expression of specific
genes marks cell fates, as indicated by the coloured arrows and tables of gene

expression constraints.

through non-determinism, which would make it harder to discover the actual

laws underlying this process.
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(a) A hypothetical progenitor cell P (b) Dashed lines in the switching net-
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6 neuron (L6). lected to be definite in each cell type.

Figure 7. A switching network of genetic interactions specifying neuron projection
fates in the wild type cortex.

4. Discussion

The potential for network reconfiguration in cells is suggestive of self-
modifying biological programs. Self-modifying programs are not a new con-
cept in software, but they have not become mainstream, mainly because
in most contexts they do not add expressive power, and are hard to write
and analyse. Consequently, modern program analysis tools have no, or very
limited, means of reasoning about such programs. It does appear, however,
that supporting the concept of switching networks in a biological context
may provide a useful abstraction for capturing the bio-molecular processes
at work as cells change type.

Since the early days of computer science, the concept of self-modifying
programs has been a natural one to explore, especially after the introduction
of the Von Neumann architecture (von Neumann, [1945)), in which both the
program and the data were stored in the same memory, leading to the pos-
sibility of allowing program modification during runtime. This model was
supported in early computer architectures (cf. e.g., (Bashe et al. [1986))
and applied in some specific domains (e.g., in computer graphics (Keppel
et al., |1991)), but did not become a mainstream paradigm. One of the rea-
sons for the limited use of self-modifying programs may be that they are
more complex to understand and maintain, and the advantages that they
offer in terms of program size and performance are less significant in modern
computer architectures.
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Boolean networks have been suggested as a useful abstraction for the
study of cell differentiation (Kauffman, |[1969; [Thomas and Kaufman, |2001)).
In this context the concept of switching was mainly used to describe changes
in the state of the nodes (genes) rather than a reconfiguration of the network
topology itself. The change in a gene’s state could be the result of executing
the GRN and by including additional effects such as the spatio-temporal
dynamics of the neighbouring cellular (tissue) environment (for examples
see (Doursat} 2008; Giavitto et al., [2012))). Recently there has been growing
interest in formal reasoning and synthesis approaches for logical models in
biology, e.g. (Guziolowski et al. [2013; Paoletti et al., 2014} |[Fisher et al.,
2015)). However, little attention has been given to the rewiring of the network
as a mechanism to achieve differentiation, or changes in the cellular function.

Petri-nets and their extensions have also been used in modelling of GRNs
(see for instance (Chaouiyaj, 2007) and (Heiner et al., [2008))). In particu-
lar, the extension of self-modifying nets (Valk} |1978)) enables one to describe
the reconfiguration of Petri-nets. This is achieved by allowing an arc to
refer to a place, implying that the number of tokens in this place should
be added/removed while firing the transition. The number of tokens in a
place can change during execution, leading to the ‘reconfiguration’ of the net.
Therefore a self modifying net can be viewed as a Petri-net that is able to
modify its own firing rules, in contrast to an ordinary Petri-net that employs
fixed firing rules. Self-modifying nets and further extensions have been used
in modelling of metabolic networks (Hofestadt and Thelen, |1998), where self-
modification permits the representation of concentrations and kinetic effects.
It is known that self-modifying Petri-nets are more expressive than conven-
tional Petri-nets, making the reachability problem undecidable (Valk} |1978).
In contrast, we define a framework in which the basic dynamic properties of
the system remain decidable when considering bounded trajectories.

Bayesian networks have been extensively applied to the problem of in-
ference of gene regulatory networks from time series data (Friedman et al.,
2000). Unlike our work, these methods handle continuous variables and
stochastic events, but they lack some of the general advantages of reasoning
based approaches, including proofs that solutions do not exist, and effective
ways to reason about sets of solutions symbolically. However, in relation to
our focus here, more recently there has been research on generalising Bayesian
network inference to the case of time-varying networks (see e.g., (Rao et al.|
2007; Song et al., 2009; Ahmed and Xing) 2009; Parikh et al., 2011; Don-
delinger et al., 2013; Khan et al., 2014)).
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Related concepts of switching have also been introduced and explored in
other fields. For example, mode-automata was proposed as a formalism for
modelling reactive systems, in order to capture explicitly a decomposition of
the system’s global behaviour into multiple independent tasks (Maraninchi
and Rémond, [1998). In our work, however, such a decomposition is not
fully known a priori, and our focus is on synthesising the structure of the
system in different cell types, which can be viewed as modes, together with
the transitions between them. Thus, our approach is also related to methods
for the synthesis of controllers for discrete event systems (e.g. (Ramadge
and Wonham, [1987)) - a problem that has received considerable attention.
However, the problem we address requires the synthesis of a system for each
cell type, such that the overall behaviour reproduces certain experimental
observations. This is in contrast to synthesising a controller that, when
coupled with the system, restricts its behaviour to some desirable subset.

The neuronal maturation example we discuss illustrates a biological sys-
tem and scenario in which it is necessary to investigate the possibility that
switching is used by cells to regulate fate specification. A detailed and real-
istic study of the question is beyond the scope of this paper, and is a topic
we are now actively pursuing. It will require an investigation of whether ad-
ditional genes, beyond those studied in (Srinivasan et al., [2012), directly reg-
ulate fate specification, and remove the need for switching. Our preliminary
results from a more detailed SGRN model that includes Soz5 in addition to
the current network components (Fezf2, Satb2, Ctip2 and Tbr1) support the
idea that switching may play a role in the neuron fate specification process.

An additional route to fate specification is for a cell to respond to external
signals from the cell environment. In this scenario, cells arising at different
developmental times, and in different regions, may be exposed to varying in-
put signals that determine fate specification accordingly. As shown in (Dunn
et al., [2014; Yordanov et al., 2016), signals can naturally be incorporated
within the synthesis framework. Ultimately, we are interested in synthesis-
ing predictive models, and thus for a switching network model to be useful
there is a need to demonstrate that model predictions can be validated ex-
perimentally, and are more accurate than those derived from static network
models. Such a goal will require us to represent a rich set of observations en-
compassing the state-of the art in the experimental knowledge of projection
fate specification in the mammalian cortex.

To summarise, computational methods are becoming a powerful tool for
experimental biologists to improve the understanding of cellular decision-
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making. In particular, formal reasoning and different synthesis approaches
are attractive as they enable the automatic generation of models that are
guaranteed to satisfy a given set of constraints representing known experi-
mental measurements. Our method provides a computational framework to
study how cells differentiate into specific cell types during development, in
particular making explicit the role of switching and reconfiguration of gene
networks governing cellular decision making. A long-term research goal is
to gain a mechanistic understanding of how biological programs operate and
experimentally to investigate the existence and design principles of (switch-
ing) biological programs, such as used to orchestrate neuron development in
the mammalian cortex.
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