
Seven Challenges in Parallel SAT Solving

Youssef Hamadi and Christoph M. Wintersteiger
Microsoft Research, 21 Station Road, Cambridge CB1 2FB, United Kingdom
{youssefh, cwinter}@microsoft.com

Abstract
This paper provides a broad overview of the state of the Parallel SAT Solving field. A set of challenges
to researchers is presented which, we believe, must be met to ensure the practical applicability of
parallel SAT solvers in the future. All these challenges are described informally, but put into
perspective with related research results, and a (subjective) grading of difficulty for each of them is
provided.

Introduction
Parallelism is the wave of the future... and always will be. The previous is a famous quote in the
Parallel Computing community. It conveys a general sentiment that the coming of parallel
architectures would forever be delayed. This was indeed true at a time where clock-speed growth
seemed always possible, allowing sequential code to seamlessly become faster. This remained true
until the thermal wall1 stopped this free lunch scenario. Chip makers had only one way to escape:
packing multiple processing units on a single processor in order to provide support for parallelism.
The future was there, and that’s when problems started for programmers.

Parallelizing code is not straight forward and beyond mere conceptual difficulties, e.g., which part
should be parallelized?, it includes low level technicalities like race conditions, deadlocks, starvation,
and non-determinism, all of which must be taken into consideration in parallel algorithm design and
implementation.

Historically, the Parallel Computing community quickly adopted combinatorial search as a
playground for applications. Search algorithms have the advantage of being conceptually simple
(think of the most basic backtrack-style algorithm) and computationally demanding due to the
(usually) exponential size of the search space. In contrast, the Search community did not really focus
its research on parallelizing. The lack of proper infrastructure and for many the feeling that
sequential algorithms were still full of research opportunities can go towards explaining that. In that
community, parallelism was often only put in the perspectives of papers with no real perspectives.
This led to a situation where parallel search algorithms were designed by people with only one part
of the required skills.

Most computational problems solved on a computer have a deterministic nature. Sometimes, these
problems can be large and divide-and-conquer parallelism is a suitable approach. In that context, if
the overhead of dividing is well controlled, linear or close to linear speedups are possible. When
Parallel Computing researchers started to address Search, they reused their main concept and tried
the most efficient way to apply divide-and-conquer techniques. Research was often about crafting

1
 Operating at higher clock-rates consumes more electrical energy partly dissipated in the form of heat.

Overcoming this heat has become technically difficult and economically inefficient. This was originally
presented as “hitting a thermal wall” by chip manufacturers.

SAT is the problem of determining if
the variables of a given Boolean
formula can be assigned in such a way
as to make the formula evaluate to
true. If no such assignment exists, the
function expressed by the formula
always evaluates to false. In this latter
case, the formula is called
unsatisfiable; otherwise it is called
satisfiable. SAT was the first known
example of an NP-complete problem
(Garey & Johnson, 1979). Briefly, this
means that there no algorithm is
known which efficiently solves all
instances of SAT and it is generally
believed (but not proven; see P versus
NP problem) that no such algorithm
can exist.

the best load-balancing strategies in order to avoid the starvation problem, while minimizing the
overhead.

Search problems are intrinsically non-deterministic, and
this very particular nature was indeed ‘discovered’ by
the aforementioned community. They encountered this
fact in the form of observing superlinear speed-ups,
which was so unusual to them that they called them
speed-up anomalies (Pruul & Nemhauser, 1988) (Rao &
Kumar, 1993).

In divide-and-conquer parallel search superlinear
speed-ups are indeed possible when the sequential
algorithm is poorly driven by its heuristics and when the
division of the search space artificially brings solutions
to the beginning of a sub space. This means that a
sequential Search algorithm does not need to exhaust
the search-space to find a solution or often even when
proving that a problem has no solution, as is the case
with conflict-driven solvers (Moskewicz, Madigan, Zhao,
Zhang, & Malik, 2001).

By 2005, it was apparent that the thermal wall had been hit and that processor speed would not
continue to increase as before. This gradually prompted the interest of Search researchers who then
started to seriously consider parallelism as a path into the future.

Boolean Satisfiability (SAT), i.e., the problem of determining whether a Boolean formula can
evaluate to true, benefits from very mature and advanced algorithms with large practical impact.
Application and research domains like Software and Hardware verification, Automated Planning,
Computational Biology, and many others benefit from modern SAT solvers. These domains have
large and difficult instances which provide the SAT community with meaningful benchmarks.

Most of the following challenges are general in such a way that the questions they raise should
positively impact not only research in parallel SAT but in parallel search in general. We first present
the current situation in sequential and parallel SAT solving and then give a set of challenges. Each of
these challenges comes with an overly optimistic estimate of its inherent difficulty represented as
black circles, where we would estimate that every black circle represents, roughly, about two years
of research.

Context: Sequential SAT Solvers

State-of-the-art solvers extend the original Davis, Putnam, Logemann, and Loveland (DPLL)
procedure (Davis, Logemann, & Loveland, 1962) with conflict analysis (Zhang, Madigan, Moskewicz,
& Malik, 2001). The general architecture of such Conflict Directed Clause Learning Solvers (CDCL) is
presented in Figure 1. These procedures include an optional pre-processing step (0) which performs
variable elimination and clause subsumption check in order to reduce the size of the formula and
improve the performance of the search process (Eén & Biere, 2005). The search then repeatedly
creates tree nodes by setting the truth value of a literal (a Boolean variable or its negation). This
assignment is used to trigger an inference step (1) that deduces and propagates some forced unit
literal assignments. This is recorded in the implication graph, a central data-structure, which stores
the partial assignment together with its implications. This branching process is repeated until finding
a model or reaching a conflict. In the first case, the formula is answered to be satisfiable, and the

model is reported. In the second case, a conflict clause is generated. This is performed by the
Conflict Analysis component through a bottom-up traversal of the implication graph and resolution
of clauses encountered during this traversal (step (2)). It stops when a conflict clause containing only
one literal from the current decision level is generated. Such a conflict clause (or learnt clause)
expresses that the last literal is implied at a previous level (it is “asserting”). The solver then jumps
back to this decision level and assigns the literal to true in step (3). When an empty conflict clause is
generated, the literal is implied at level 0, and the original formula can be reported as unsatisfiable.
In addition to this basic scheme, modern solvers use additional components such as literal selection
heuristics and a restart policy. For instance, the rank or Activity of each Boolean variable
encountered during the previous resolution process is increased (step (4)). The variable with
greatest activity is selected to be assigned as the next decision. This corresponds to the so called
VSIDS variable branching heuristic (Zhang, Madigan, Moskewicz, & Malik, 2001). When branching,
after a certain amount of conflicts, a cutoff limit is reached and the search is restarted (step (5)).

Figure 1: The general architecture of a sequential SAT solver

Context: Parallel SAT Solvers

There are two main approaches to parallel SAT solving. The first one implements the historical
divide-and-conquer idea, which incrementally divides the search space into subspaces, successively
allocated to sequential CDCL workers. Workers cooperate through some load balancing strategy
which performs the dynamic transfer of subspaces to idle workers, and through the exchange of
conflict clauses.

The Parallel Portfolio approach was introduced in 2008 (Hamadi, Jabbour, & Sais, 2008;
Wintersteiger, Hamadi, & de Moura, 2009; Guo, Hamadi, Jabbour, & Sais, 2010). It exploits the

complementarity of different sequential DPLL strategies to let them compete and cooperate on the
same formula. Since each worker addresses the whole formula, there is no need to introduce load
balancing overheads, and cooperation is only achieved through the exchange of conflict clauses.
With this approach, the crafting of the strategies is important, especially with a few workers. The
objective is to cover the space of good search strategies in the best possible way.

In general, the interleaving of computation can lead to the previously mentioned problem of non-
determinism. This is true for solvers which use a divide-and-conquer or a Portfolio approach. In
(Hamadi, Jabbour, Piette, & Sais, 2011), the authors propose a new technique to efficiently ensure
the determinization of any parallel portfolio algorithm. Their method performs dynamic
synchronization which minimizes waiting time at barriers. This allows a parallel SAT portfolio to
always return the same solution (or proof of unsatisfiability) in about the same runtime, while
preserving performance.

In Figure 2 we present the CDCL architecture of a typical worker. It extends the original architecture
presented in Figure 1 with a Knowledge Sharing component which exports and imports conflict
clauses. Clauses are exported during the step 3. If an imported conflict clause (in step (6)) contradicts
the current branch, the aforementioned conflict analysis and backjumping steps are executed.
Finally, the Knowledge Sharing unit can use the information gained by the VSIDS heuristic to filter
out incoming information. This is figured through a link between the Decisions and Knowledge
sharing components, and will be detailed in Challenge 4. For a broader overview of parallel SAT
solving see (Martins, Manquinho, & Lynce, 2012).

Figure 2: The general architecture of a parallel SAT solver

Context: Performance Evaluation

We suggest that performance evaluation of parallel SAT solvers be conducted on practically relevant
benchmark sets as is currently done in the bi-annual SAT competitions. We consider randomly

generated benchmarks of mostly theoretical interest, but not necessarily as an indicator of the
performance of a parallel SAT solver in practice. Especially non-deterministic solvers may benefit
from an evenly distributed set of benchmarks, which may translate into performance figures that are
only achievable in theory but not in practice.

Usually, the speedup of a parallel solver over a sequential on is defined as

such that a parallel solver that runs in time exhibits a speedup S over a sequential solver which

runs in time . In practice, there are two different categories of applications for parallel SAT solvers
which have different objectives: efficiency or effectiveness. The speedup by itself is not considered
an indicative measure of performance for either of these categories. Instead, in the first category of
applications, the runtime efficiency

where is the number of resources available to the solver, is of the greatest interest. For example,
in applications where energy consumption is an issue, a solver that performs at lower efficiency may
be considered inferior to a solver that performs efficiently, even if its speedup figure is smaller. We
expect this will be the case for many software and hardware verification applications in the near
future, where limited-size clusters are used to verify designs overnight. In the second category of
applications, the absolute wall-clock time required to solve a problem is of paramount importance;
we call this the runtime effectiveness of the solver, which we consider a better measure of
performance in applications where energy consumption is of little or no importance. For example in
cryptographic applications, especially for code breaking, we may assume that energy consumption
and the available size of the cluster are irrelevant.

In general, the trade-off between efficiency and effectiveness highly depends on the application and
it is ultimately a decision that the community of SAT solver developers cannot make for the end-
user. We therefore suggest providing both, measures of efficiency and effectiveness in a
performance evaluation of parallel SAT solvers.

We wish to remark upon the number in efficiency computations. In many evaluations as well as
the theoretical analysis of algorithms, this number is simply taken to be the number of computing
elements available to the parallel solver. This is fully justified for theoretical purposes. In practice,
this is not realistic, especially for multi-core machines (cf. e.g., (Wintersteiger, Hamadi, & de Moura,
2009)). It is sometimes assumed that an -core machine is able to perform times the work of the
corresponding single core machine, which is simply not true due to memory and cache congestion
issues, but also because modern processors change their behavior when multiple cores are under
load, e.g., by reducing the clock speed to avoid overheating. We therefore propose to compute the
efficiency of a parallel multi-core SAT solver with respect to its true capacity which is to be measured
in a prior calibration experiment. For example, this may be estimated by running copies of a
sequential SAT solver in parallel with an observed runtime of which will be greater than . To
compute the efficiency of a parallel -core solver we propose to use

which we consider more realistic. In what follows we refer only to the general performance of a
solver. Depending on the intended application, this is to be taken as either the efficiency or the
effectiveness of the solver.

The Challenges

Dynamic Resource Allocation

As presented in the Introduction, a divide-and-conquer approach can be lucky. A run can benefit
from a good split which brings a solution at the beginning of some subspace and allow for an early
stop. In contrast, a different division can decrease performance. What is interesting here is that
adding resources can decrease the performance since it can produce more demanding subspaces.

Even if Portfolio-based approaches are less prone to this problem, extending the size of a Portfolio
can still be detrimental to its performance. In general, this increases the overhead due to more
frequent and broader clause-sharing, and worsens cache congestion issues. A priori, the question of
deciding the most effective number of resources to use against a given formula is a difficult one.

One possible direction of research is to extend Automatic Tuning techniques. These approaches use
Machine Learning to craft a predictive function which relates the features of an instance and the
parameters of a given solver, to its expected runtime. This function can be learned and tested
offline, against a large set of representative instances and used at runtime to configure a solver and
maximize its performance. This offline approach assumes that a large and representative set of
instances is available beforehand (Xu, Hutter, Hoos, & Leyton-Brown, 2008). A more recent approach
avoids this problem by learning the function online (Arbelaez, Hamadi, & Sebag, 2010). We believe
that the previous offline and online approaches could be extended to consider the number of
resources as an additional parameter of the solver.

Challenge 1. Generalize Automatic Tuning techniques to decide among other solver parameters, the
best amount of computational resource . ●○○○○

Decomposition

In the area of parallel algorithms it is natural to think of decomposition of the problem into a number
of smaller subproblems. Most parallel SAT solvers are based on search algorithms and we identify
two inherently different types of decomposition for search algorithms:

- Search-space decompositions and
- Instance decompositions.

In the first category, the search-space of the problem is decomposed, i.e., the nodes or processes
explore different (potentially overlapping) parts of the search-space of the problem. In the case of
SAT, the simplest way of achieving this is by duplication of the problem and assignment of a variable
to contradicting values in the two branches. The set of assigned literals in any of the leaves of such a
decomposition tree is then called a guiding path (Zhang, Bonacina, & Hsiang, 1996). As we have seen
with the previous challenge, finding a good decomposition prior to solving the formula is a hard
problem as it is hard to predict the hardness of each of the subproblems.

In the second category of decompositions, the instance itself is decomposed such that none of the
computing elements has knowledge of the whole problem instance. This type of decomposition is
especially important when large formulas are considered2; for example, deep BMC unwindings in
hardware verification (Ganai, Gupta, Yang, & Ashar, 2006). Finding an optimal decomposition which
balances the size of the subproblems is easy for SAT problems, but the resulting subproblems are
usually not balanced with respect to their hardness. On the other hand, finding a good instance

2
 Remark that in some case, the distribution is a given. This is the case in distributed constraint reasoning

where privacy concerns imply that agents only exploit a partial view of the problem (Ringwelski & Hamadi,
2005).

decomposition which minimizes the number of shared variables is a hard problem in itself and for
this reason approximations may result in better overall performance. Recently, it has been shown
that it is possible to recover from very crude approximations quickly through the use of Craig
interpolation procedures, which are techniques to synthesize implied facts (called Interpolants)
from unsatisfiable implications , such that and uses only variables common to
and . It has been demonstrated that the incorporation of such techniques into the SAT solver not
only presents a large number of opportunities for parallel solvers, but that dynamic instance
decompositions may even improve the performance of a sequential SAT solver when combined with
well-chosen interpolation methods (Hamadi, Marques-Silva, & Wintersteiger, 2011).

Clearly, for both types of decomposition, the state of the art is unsatisfactory and further research is
needed to find good decompositions and recover methods that perform well in practice, both for
large search-spaces and for large problem instances.

Challenge 2. Design a dynamic decomposition technique for either of the two classes of
decomposition which is efficiently computable and results in decompositions that enable solvers to
consistently outperform currently known methods. ●●●○○

Preprocessing

In the recent past, preprocessing for SAT formulas has received increased attention and it has been
shown that some types of preprocessing have a great effect on the performance of sequential SAT
solvers, e.g., (Eén & Biere, 2005). We believe that in the context of parallel SAT solving, new
preprocessing techniques are required. For instance, it may not be necessary (or even beneficial) to
aggressively reduce the number of clauses in a problem before it is split or distributed to the
computing elements.

Furthermore, preprocessing in the context of parallel SAT should take into account the nature of the
parallelization approach, especially the type of decomposition that is used, i.e., search-space or
instance decomposition. Depending on the type of decomposition, different preprocessing
techniques may have the best effect on the performance of the solver. For example, in instance
decompositions it may be much more effective to minimize the set of overlapping variables between
subproblems than to minimize the overall size of the formula.

For very large formulas, it may be infeasible to preprocess a whole problem instance before solving
it. We therefore consider it worthwhile to investigate parallel preprocessing algorithms as well.

Challenge 3. Devise new parallel preprocessing techniques that, with knowledge of the type of
decomposition being used, simplify a problem instance such that the overall performance of the
solver is increased. ●●●○○

Improved Knowledge Sharing

Modern SAT solvers generate conflict clauses to prevent the reoccurrence of a conflict and to back-
jump effectively in the list of decisions. Recent parallel solvers have leveraged these clauses by
sharing them. Since search can generate a large (exponential) number of new clauses, strategies
were defined to limit the overhead of communication.

The most basic strategy limits the size of the shared clauses up to some fixed limit. This has two
advantages. It restricts the overhead, and focuses the cooperation to powerful clauses.

However, the static-size strategy can miss situations where more cooperation would help, for
instance, when two strategies explore the same subspace. Also, it might maintain useless exchanges
between strategies which focus on independent sub problems.

The Integer Factorization
Problem (IF): Given two
integers and such
that , determine
whether has a non-trivial
factor .

To alleviate these problems, (Hamadi, Jabbour, & Sais, 2009) have introduced a dynamic strategy
which uses Control Theory techniques to automatically increase or reduce the quantity of clauses
shared between two search efforts. Their technique estimates the quality of incoming clauses as the
observed performance and uses this information to extend or restrict the cooperation.

Assessing the quality of a clause with respect to its local impact is difficult and a generalization of the
clause deletion problem in modern CDCL solvers. We think that the community should spend some
effort to define better quality measures, in order to leverage the benefits of clause-sharing, and we
therefore propose the following challenge.

Challenge 4. Drive the cooperation through better estimates of the local Quality of incoming
clauses. ●●○○○

Integer Factorization

We believe that it is beneficial to the community to contemplate
solving challenging problems from related areas for which SAT
solvers may ultimately present an effective solution. Recently
there has been an increased interest in solving problems related
to security applications in the SAT community. One problem that
is particularly challenging and of utmost importance in practical
security applications, is the (decision version of the) integer
factorization problem IF.

This problem is known to be in NP and there exists a trivial encoding to SAT, e.g., via the Boolean
encoding of a multiplier circuit, but the performance of current SAT technology on such formulas is
not competitive with that of dedicated, sub-exponential algorithms like the quadratic and general
number field sieve (for an introduction see e.g., (Crandall & Pomerance, 2001). It is typical for these
dedicated algorithms to require a large number of resources for a long time. For instance, the recent
success in factoring a 768-bit integer through a distributed number field sieve kept many hundred
machines busy for almost two years; a total equivalent of fifteen hundred years of computation on a
single-core processor (Kleinjung, et al., 2010).

We consider IF a prime example of a challenging problem for parallel SAT solving, not only for its
potential practical implications, but also because advances in this direction would shed more light on
the structure of NP. Currently, IF is believed not to be NP-complete, but also to lie outside of P. It is a
candidate for the NP-intermediate complexity class (Ladner, 1975), which, currently, very little is
known about. Finding practically efficient parallel algorithms for problems in this class would not
only have a great impact in practice, but for the theory of SAT and parallel algorithms in general.

Challenge 5. Design an encoding of IF instances and a parallel SAT solver that performs
competitively with dedicated algorithms for IF. ●●●●●

Specific Encodings

As a sixth challenge, we suggest to investigate new encodings of the SAT problem. Most SAT solvers
support only the solving of formulas in CNF form and it is possible that this encoding, while
convenient, poses a limitation for parallel solvers. For example, it is conceivable that, when many
processors are employed, a pipelined evaluation of assignments on deep circuits could perform
better than a CNF encoding with clauses held in the usual watchlists, simply because the
locking/synchronization overhead on the watchlists grows too quickly as the number of processors is
increased.

Challenge 6. Devise a new encoding of SAT problems specifically for parallel solvers. ●●●●●

Starting from Scratch

Much of the ongoing research in parallel SAT is focused on parallelizing existing algorithms and
implementations, many of them based on CDCL solvers. We believe that parallelizing existing
procedures is not the best way to obtain a truly well-performing parallel SAT algorithm. Instead we
propose to start from scratch and to investigate completely new algorithms and data-structures for
parallel SAT or to revisit techniques which were deemed inefficient in the past.

The root cause of our suggestion is the fact that most modern sequential SAT solvers are ultimately
based on Boolean constraint propagation (BCP), which is a P-complete problem and thus suspected
to be hard to parallelize (Hamadi Y. , 2002). If we think of a CDCL solver as a dynamic decomposition
of the search-space (through decision variables), then most of the speedups are likely to be obtained
on this higher level of decomposition and recombination (decision making, conflict analysis and
sharing), but it might ultimately remain difficult to effectively parallelize the rest of the algorithm.
Further research into parallelizations of existing solvers may help to gain a better understanding of
the challenges of parallelizations of P-complete problems, but we believe that it will be hard to
design algorithms that perform well in practice. It is conceivable that there exist other algorithms
which are much easier to parallelize.

For instance, it is conceivable that an algorithm based on a reduction to a series of bounded-width
branching programs would be considerably easier to parallelize, since it is known that branching
programs of width 5 and of polynomial length recognize exactly those languages in (Barrington,
1986); a complexity class for which algorithms are suspected to be easy to parallelize.

Challenge 7. Devise a parallel algorithm for SAT which is not based on a reduction to a (set of) P-
complete problem(s) and that performs en par with or better than parallelizations of CDCL. ●●●●●

Conclusion
Today, computers have multiple cores and Cloud computing allows users to cheaply rent virtual
resources on which to run their applications. Still, most Search researchers restrict themselves to
sequential algorithms. This is paradoxical, especially when we consider the importance of Search.
There are two complementary explanations to this situation: The first one lies in the lack of parallel
programming skills and the second comes from the difficulty of good intuition building.

The first problem is very general and can only be tackled by making progress in Parallel Programming
Languages and Tools, and an increase in parallelism courses in undergraduate curricula. Difficult, but
feasible. Solving the second problem is much more challenging. It requires years of practice which
can only sometimes provide with the expertise and intuition required for significant contributions.

In this paper, we try to address the second point. Our strategy is to share our views and
understanding of the evolution of parallel search in general and parallel SAT solving in particular.
From that understanding, we present a list of important challenges. They have different goals and
different inherent complexities. Our objective is not necessarily to put the community onto them,
but we believe that by sharing our views we can contribute to fostering an increased interest in
parallel SAT solving and parallel search in general. We hope that this will eventually result in better
parallel algorithms that further increase the practical applicability of Search.

Bibliography
Arbelaez, A., & Hamadi, Y. (2011). Improving Parallel Local Search for SAT. Learning and Intelligent

Optimization (LION), (pp. 46-60).

Arbelaez, A., Hamadi, Y., & Sebag, M. (2010). Continuous Search in Constraint Programming.

International Conference on Tools with Artificial Intelligence (ICTAI), (pp. 53-60).

Barrington, D. A. (1986). Bounded-width polynomial-size branching programs recognize exactly

those languages in NC1. ACM Symposium on Theory of Computing (STOC), (pp. 1--5).

Crandall, R., & Pomerance, C. (2001). Prime numbers: a computational perspective. Springer.

Davis, M., Logemann, G., & Loveland, D. W. (1962). A machine program for theorem-proving.

Communications of the ACM, 394-397.

Eén, N., & Biere, A. (2005). Effective Preprocessing in {SAT} Through Variable and Clause Elimination.

Theory and Applications of Satisfiability Testing (SAT), (pp. 61-75).

Ganai, M., Gupta, A., Yang, Z., & Ashar, P. (2006). Efficient distributed SAT and SAT-based distributed

Bounded Model Checking. International Journal on Software Tools for Technology Transfer

(STTT), 8(4), 387-396.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman.

Guo, L., Hamadi, Y., Jabbour, S., & Sais, L. (2010). Diversification and Intensification in Parallel SAT

Solving. Principles and Practice of Constraint Programming (CP), (pp. 255-265).

Hamadi, Y. (2002). Optimal Distributed Arc-Consistency. Constraints, 367-385.

Hamadi, Y., Jabbour, S., & Sais, L. (2008). ManySAT: solver description. Microsoft Research MSR-TR-

2008-83.

Hamadi, Y., Jabbour, S., & Sais, L. (2009). Control-Based Clause Sharing in Parallel {SAT} Solving.

International Joint Conference on Artificial Intelligence (IJCAI), (pp. 499-504).

Hamadi, Y., Jabbour, S., Piette, C., & Sais, L. (2011). Deterministic Parallel DPLL. Journal of

Satisfiability (JSAT), 7(4), 127-132.

Hamadi, Y., Marques-Silva, J., & Wintersteiger, C. M. (2011). Lazy Decomposition for Distributed

Decision Procedures. Workshop on Parallel and Distributed Methods in Model Checking

(PDMC), (pp. 43-54).

Kleinjung, T., Aoki, K., Franke, J., Lenstra, A., Thomé, E., Bos, J., . . . Zimmermann, P. (2010).

Factorization of a 768-bit RSA modulus. Cryptology ePrint Archive, Report 2010/006.

Ladner, R. E. (1975). On the Structure of Polynomial Time Reducibility. Journal of the ACM, 22(1),

155-171.

Martins, R., Manquinho, V. M., & Lynce, I. (2012). An overview of parallel SAT solving. Constraints,

17(3), 304-347.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an

Efficient SAT Solver. Design Automation Conference (DAC), (pp. 530-535).

Pruul, E. A., & Nemhauser, G. L. (1988). Branch-and-bound and parallel computation: A historical

note. Operations Research Letters, 65-69.

Rao, V. N., & Kumar, V. (1993). On the Efficiency of Parallel Backtracking. IEEE Transactions on

Parallel and Distributed Systems, 427-437.

Ringwelski, G., & Hamadi, Y. (2005). Boosting Distributed Constraint Satisfaction. Principles and

Practice of Constraint Programming, (pp. 549-562).

Wintersteiger, C. M., Hamadi, Y., & de Moura, L. (2009). A Concurrent Portfolio Approach to SMT

Solving. Computer Aided Verification (CAV), (pp. 715-720).

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based Algorithm

Selection for SAT. Journal of Artificial Intelligence Research (JAIR), 32, 565-606.

Zhang, H., Bonacina, M. P., & Hsiang, J. (1996). PSATO: a Distributed Propositional Prover and its

Application to Quasigroup Problems. Journal of Symbolic Computation (JSC), 21, 543-560.

Zhang, L., Madigan, C. F., Moskewicz, M. W., & Malik, S. (2001). Efficient Conflict Driven Learning in

Boolean Satisfiability Solver. ICCAD, (pp. 279-285).

Biographical Sketches

Youssef Hamadi is a Senior Researcher at Microsoft Research. He holds a doctoral degree in

Computer Science from the University of Montpellier in France, and a Habilitation from the

University of Paris-Sud, France. His research interests involve the practical resolution of large scale

real life problems. His work is set at the intersection of Optimization and Artificial Intelligence. His

research considers the design of complex systems based on multiple formalisms fed by different

information channels which plan ahead and perform smart decisions. His current focus is on

Autonomous Search, Parallel Search, and Boolean Satisfiability, with applications to Environmental

Intelligence, Business Intelligence, and Software Verification.

Christoph M. Wintersteiger is a Researcher at Microsoft Research. He holds an engineering degree

in Computer Science from the University of Linz, Austria and a doctoral degree in Computer Science

from ETH Zurich, Switzerland. His research is focussed on the investigation and design of automated

reasoning techniques and applications thereof, especially in the field of automated software

verification. He currently works on parallel and distributed methods for SAT and SMT solving.

