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Abstract 
This paper provides a broad overview of the state of the Parallel SAT Solving field. A set of challenges 
to researchers is presented which, we believe, must be met to ensure the practical applicability of 
parallel SAT solvers in the future. All these challenges are described informally, but put into 
perspective with related research results, and a (subjective) grading of difficulty for each of them is 
provided. 
 

Introduction 
Parallelism is the wave of the future... and always will be. The previous is a famous quote in the 
Parallel Computing community. It conveys a general sentiment that the coming of parallel 
architectures would forever be delayed. This was indeed true at a time where clock-speed growth 
seemed always possible, allowing sequential code to seamlessly become faster.  This remained true 
until the thermal wall1 stopped this free lunch scenario. Chip makers had only one way to escape: 
packing multiple processing units on a single processor in order to provide support for parallelism. 
The future was there, and that’s when problems started for programmers.  
 
Parallelizing code is not straight forward and beyond mere conceptual difficulties, e.g., which part 
should be parallelized?, it includes low level technicalities like race conditions, deadlocks, starvation, 
and non-determinism, all of which must be taken into consideration in parallel algorithm design and 
implementation. 
 
Historically, the Parallel Computing community quickly adopted combinatorial search as a 
playground for applications. Search algorithms have the advantage of being conceptually simple 
(think of the most basic backtrack-style algorithm) and computationally demanding due to the 
(usually) exponential size of the search space. In contrast, the Search community did not really focus 
its research on parallelizing. The lack of proper infrastructure and for many the feeling that 
sequential algorithms were still full of research opportunities can go towards explaining that. In that 
community, parallelism was often only put in the perspectives of papers with no real perspectives.  
This led to a situation where parallel search algorithms were designed by people with only one part 
of the required skills.  
 
Most computational problems solved on a computer have a deterministic nature. Sometimes, these 
problems can be large and divide-and-conquer parallelism is a suitable approach. In that context, if 
the overhead of dividing is well controlled, linear or close to linear speedups are possible. When 
Parallel Computing researchers started to address Search, they reused their main concept and tried 
the most efficient way to apply divide-and-conquer techniques. Research was often about crafting 
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 Operating at higher clock-rates consumes more electrical energy partly dissipated in the form of heat. 

Overcoming this heat has become technically difficult and economically inefficient. This was originally 
presented as “hitting a thermal wall” by chip manufacturers. 



SAT is the problem of determining if 
the variables of a given Boolean 
formula can be assigned in such a way 
as to make the formula evaluate to 
true. If no such assignment exists, the 
function expressed by the formula 
always evaluates to false. In this latter 
case, the formula is called 
unsatisfiable; otherwise it is called 
satisfiable. SAT was the first known 
example of an NP-complete problem 
(Garey & Johnson, 1979). Briefly, this 
means that there no algorithm is 
known which efficiently solves all 
instances of SAT and it is generally 
believed (but not proven; see P versus 
NP problem) that no such algorithm 
can exist. 
 

the best load-balancing strategies in order to avoid the starvation problem, while minimizing the 
overhead. 
 
Search problems are intrinsically non-deterministic, and 
this very particular nature was indeed ‘discovered’ by 
the aforementioned community. They encountered this 
fact in the form of observing superlinear speed-ups, 
which was so unusual to them that they called them 
speed-up anomalies (Pruul & Nemhauser, 1988) (Rao & 
Kumar, 1993). 
 
In divide-and-conquer parallel search superlinear 
speed-ups are indeed possible when the sequential 
algorithm is poorly driven by its heuristics and when the 
division of the search space artificially brings solutions 
to the beginning of a sub space.  This means that a 
sequential Search algorithm does not need to exhaust 
the search-space to find a solution or often even when 
proving that a problem has no solution, as is the case 
with conflict-driven solvers (Moskewicz, Madigan, Zhao, 
Zhang, & Malik, 2001). 
 
By 2005, it was apparent that the thermal wall had been hit and that processor speed would not 
continue to increase as before. This gradually prompted the interest of Search researchers who then 
started to seriously consider parallelism as a path into the future. 
 
Boolean Satisfiability (SAT), i.e., the problem of determining whether a Boolean formula can 
evaluate to true, benefits from very mature and advanced algorithms with large practical impact. 
Application and research domains like Software and Hardware verification, Automated Planning, 
Computational Biology, and many others benefit from modern SAT solvers. These domains have 
large and difficult instances which provide the SAT community with meaningful benchmarks.  
 
Most of the following challenges are general in such a way that the questions they raise should 
positively impact not only research in parallel SAT but in parallel search in general. We first present 
the current situation in sequential and parallel SAT solving and then give a set of challenges. Each of 
these challenges comes with an overly optimistic estimate of its inherent difficulty represented as 
black circles, where we would estimate that every black circle represents, roughly, about two years 
of research.  
 

Context: Sequential SAT Solvers 

State-of-the-art solvers extend the original Davis, Putnam, Logemann, and Loveland (DPLL) 
procedure (Davis, Logemann, & Loveland, 1962) with conflict analysis (Zhang, Madigan, Moskewicz, 
& Malik, 2001). The general architecture of such Conflict Directed Clause Learning Solvers (CDCL) is 
presented in Figure 1. These procedures include an optional pre-processing step (0) which performs 
variable elimination and clause subsumption check in order to reduce the size of the formula and 
improve the performance of the search process (Eén & Biere, 2005). The search then repeatedly 
creates tree nodes by setting the truth value of a literal (a Boolean variable or its negation). This 
assignment is used to trigger an inference step (1) that deduces and propagates some forced unit 
literal assignments. This is recorded in the implication graph, a central data-structure, which stores 
the partial assignment together with its implications. This branching process is repeated until finding 
a model or reaching a conflict. In the first case, the formula is answered to be satisfiable, and the 



model is reported. In the second case, a conflict clause is generated. This is performed by the 
Conflict Analysis component through a bottom-up traversal of the implication graph and resolution 
of clauses encountered during this traversal (step (2)). It stops when a conflict clause containing only 
one literal from the current decision level is generated. Such a conflict clause (or learnt clause) 
expresses that the last literal is implied at a previous level (it is “asserting”). The solver then jumps 
back to this decision level and assigns the literal to true in step (3). When an empty conflict clause is 
generated, the literal is implied at level 0, and the original formula can be reported as unsatisfiable. 
In addition to this basic scheme, modern solvers use additional components such as literal selection 
heuristics and a restart policy. For instance, the rank or Activity of each Boolean variable 
encountered during the previous resolution process is increased (step (4)). The variable with 
greatest activity is selected to be assigned as the next decision. This corresponds to the so called 
VSIDS variable branching heuristic (Zhang, Madigan, Moskewicz, & Malik, 2001). When branching, 
after a certain amount of conflicts, a cutoff limit is reached and the search is restarted (step (5)).  

 
 
 

 
 

Figure 1: The general architecture of a sequential SAT solver 

 

Context: Parallel SAT Solvers 

There are two main approaches to parallel SAT solving. The first one implements the historical 
divide-and-conquer idea, which incrementally divides the search space into subspaces, successively 
allocated to sequential CDCL workers. Workers cooperate through some load balancing strategy 
which performs the dynamic transfer of subspaces to idle workers, and through the exchange of 
conflict clauses. 
  
The Parallel Portfolio approach was introduced in 2008 (Hamadi, Jabbour, & Sais, 2008; 
Wintersteiger, Hamadi, & de Moura, 2009; Guo, Hamadi, Jabbour, & Sais, 2010). It exploits the 



complementarity of different sequential DPLL strategies to let them compete and cooperate on the 
same formula. Since each worker addresses the whole formula, there is no need to introduce load 
balancing overheads, and cooperation is only achieved through the exchange of conflict clauses. 
With this approach, the crafting of the strategies is important, especially with a few workers. The 
objective is to cover the space of good search strategies in the best possible way.  
 
In general, the interleaving of computation can lead to the previously mentioned problem of non-
determinism. This is true for solvers which use a divide-and-conquer or a Portfolio approach. In 
(Hamadi, Jabbour, Piette, & Sais, 2011), the authors propose a new technique to efficiently ensure 
the determinization of any parallel portfolio algorithm. Their method performs dynamic 
synchronization which minimizes waiting time at barriers. This allows a parallel SAT portfolio to 
always return the same solution (or proof of unsatisfiability) in about the same runtime, while 
preserving performance.  
 
In Figure 2 we present the CDCL architecture of a typical worker. It extends the original architecture 
presented in Figure 1 with a Knowledge Sharing component which exports and imports conflict 
clauses. Clauses are exported during the step 3. If an imported conflict clause (in step (6)) contradicts 
the current branch, the aforementioned conflict analysis and backjumping steps are executed. 
Finally, the Knowledge Sharing unit can use the information gained by the VSIDS heuristic to filter 
out incoming information. This is figured through a link between the Decisions and Knowledge 
sharing components, and will be detailed in Challenge 4. For a broader overview of parallel SAT 
solving see (Martins, Manquinho, & Lynce, 2012). 
 

 
 

Figure 2: The general architecture of a parallel SAT solver 

 

Context: Performance Evaluation 

We suggest that performance evaluation of parallel SAT solvers be conducted on practically relevant 
benchmark sets as is currently done in the bi-annual SAT competitions. We consider randomly 



generated benchmarks of mostly theoretical interest, but not necessarily as an indicator of the 
performance of a parallel SAT solver in practice. Especially non-deterministic solvers may benefit 
from an evenly distributed set of benchmarks, which may translate into performance figures that are 
only achievable in theory but not in practice.  
 
Usually, the speedup of a parallel solver over a sequential on is defined as 

   
  
  
   

such that a parallel solver that runs in time    exhibits a speedup S over a sequential solver which 

runs in time   . In practice, there are two different categories of applications for parallel SAT solvers 
which have different objectives: efficiency or effectiveness. The speedup by itself is not considered 
an indicative measure of performance for either of these categories. Instead, in the first category of 
applications, the runtime efficiency 

  
 

 
 

  
    

   

where   is the number of resources available to the solver, is of the greatest interest. For example, 
in applications where energy consumption is an issue, a solver that performs at lower efficiency may 
be considered inferior to a solver that performs efficiently, even if its speedup figure is smaller. We 
expect this will be the case for many software and hardware verification applications in the near 
future, where limited-size clusters are used to verify designs overnight. In the second category of 
applications, the absolute wall-clock time required to solve a problem is of paramount importance; 
we call this the runtime effectiveness of the solver, which we consider a better measure of 
performance in applications where energy consumption is of little or no importance. For example in 
cryptographic applications, especially for code breaking, we may assume that energy consumption 
and the available size of the cluster are irrelevant. 
 
In general, the trade-off between efficiency and effectiveness highly depends on the application and 
it is ultimately a decision that the community of SAT solver developers cannot make for the end-
user. We therefore suggest providing both, measures of efficiency and effectiveness in a 
performance evaluation of parallel SAT solvers. 
 
We wish to remark upon the number   in efficiency computations. In many evaluations as well as 
the theoretical analysis of algorithms, this number is simply taken to be the number of computing 
elements available to the parallel solver. This is fully justified for theoretical purposes. In practice, 
this is not realistic, especially for multi-core machines (cf. e.g., (Wintersteiger, Hamadi, & de Moura, 
2009)). It is sometimes assumed that an  -core machine is able to perform   times the work of the 
corresponding single core machine, which is simply not true due to memory and cache congestion 
issues, but also because modern processors change their behavior when multiple cores are under 
load, e.g., by reducing the clock speed to avoid overheating. We therefore propose to compute the 
efficiency of a parallel multi-core SAT solver with respect to its true capacity which is to be measured 
in a prior calibration experiment. For example, this may be estimated by running   copies of a 
sequential SAT solver in parallel with an observed runtime of     which will be greater than   . To 
compute the efficiency of a parallel  -core solver we propose to use 

    
  
   
   

which we consider more realistic. In what follows we refer only to the general performance of a 
solver. Depending on the intended application, this is to be taken as either the efficiency or the 
effectiveness of the solver. 
 



The Challenges 

Dynamic Resource Allocation 

As presented in the Introduction, a divide-and-conquer approach can be lucky. A run can benefit 
from a good split which brings a solution at the beginning of some subspace and allow for an early 
stop. In contrast, a different division can decrease performance. What is interesting here is that 
adding resources can decrease the performance since it can produce more demanding subspaces.  
 
Even if Portfolio-based approaches are less prone to this problem, extending the size of a Portfolio 
can still be detrimental to its performance. In general, this increases the overhead due to more 
frequent and broader clause-sharing, and worsens cache congestion issues.  A priori, the question of 
deciding the most effective number of resources to use against a given formula is a difficult one.   
 
One possible direction of research is to extend Automatic Tuning techniques. These approaches use 
Machine Learning to craft a predictive function which relates the features of an instance and the 
parameters of a given solver, to its expected runtime. This function can be learned and tested 
offline, against a large set of representative instances and used at runtime to configure a solver and 
maximize its performance. This offline approach assumes that a large and representative set of 
instances is available beforehand (Xu, Hutter, Hoos, & Leyton-Brown, 2008). A more recent approach 
avoids this problem by learning the function online (Arbelaez, Hamadi, & Sebag, 2010). We believe 
that the previous offline and online approaches could be extended to consider the number of 
resources   as an additional parameter of the solver.  
  
Challenge 1. Generalize Automatic Tuning techniques to decide among other solver parameters, the 
best amount of computational resource  . ●○○○○ 

Decomposition 

In the area of parallel algorithms it is natural to think of decomposition of the problem into a number 
of smaller subproblems. Most parallel SAT solvers are based on search algorithms and we identify 
two inherently different types of decomposition for search algorithms: 

- Search-space decompositions and 
- Instance decompositions. 

 
In the first category, the search-space of the problem is decomposed, i.e., the nodes or processes 
explore different (potentially overlapping) parts of the search-space of the problem. In the case of 
SAT, the simplest way of achieving this is by duplication of the problem and assignment of a variable 
to contradicting values in the two branches. The set of assigned literals in any of the leaves of such a 
decomposition tree is then called a guiding path (Zhang, Bonacina, & Hsiang, 1996). As we have seen 
with the previous challenge, finding a good decomposition prior to solving the formula is a hard 
problem as it is hard to predict the hardness of each of the subproblems.  
 
In the second category of decompositions, the instance itself is decomposed such that none of the 
computing elements has knowledge of the whole problem instance. This type of decomposition is 
especially important when large formulas are considered2; for example, deep BMC unwindings in 
hardware verification (Ganai, Gupta, Yang, & Ashar, 2006). Finding an optimal decomposition which 
balances the size of the subproblems is easy for SAT problems, but the resulting subproblems are 
usually not balanced with respect to their hardness. On the other hand, finding a good instance 
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 Remark that in some case, the distribution is a given. This is the case in distributed constraint reasoning 

where privacy concerns imply that agents only exploit a partial view of the problem (Ringwelski & Hamadi, 
2005). 



decomposition which minimizes the number of shared variables is a hard problem in itself and for 
this reason approximations may result in better overall performance. Recently, it has been shown 
that it is possible to recover from very crude approximations quickly through the use of Craig 
interpolation procedures, which are techniques to synthesize implied facts (called Interpolants)   
from unsatisfiable implications    , such that       and   uses only variables common to   
and  . It has been demonstrated that the incorporation of such techniques into the SAT solver not 
only presents a large number of opportunities for parallel solvers, but that dynamic instance 
decompositions may even improve the performance of a sequential SAT solver when combined with 
well-chosen interpolation methods (Hamadi, Marques-Silva, & Wintersteiger, 2011).  
 
Clearly, for both types of decomposition, the state of the art is unsatisfactory and further research is 
needed to find good decompositions and recover methods that perform well in practice, both for 
large search-spaces and for large problem instances. 
 
Challenge 2. Design a dynamic decomposition technique for either of the two classes of 
decomposition which is efficiently computable and results in decompositions that enable solvers to 
consistently outperform currently known methods.  ●●●○○  

Preprocessing 

In the recent past, preprocessing for SAT formulas has received increased attention and it has been 
shown that some types of preprocessing have a great effect on the performance of sequential SAT 
solvers, e.g., (Eén & Biere, 2005). We believe that in the context of parallel SAT solving, new 
preprocessing techniques are required. For instance, it may not be necessary (or even beneficial) to 
aggressively reduce the number of clauses in a problem before it is split or distributed to the 
computing elements.  
 
Furthermore, preprocessing in the context of parallel SAT should take into account the nature of the 
parallelization approach, especially the type of decomposition that is used, i.e., search-space or 
instance decomposition. Depending on the type of decomposition, different preprocessing 
techniques may have the best effect on the performance of the solver. For example, in instance 
decompositions it may be much more effective to minimize the set of overlapping variables between 
subproblems than to minimize the overall size of the formula. 
 
For very large formulas, it may be infeasible to preprocess a whole problem instance before solving 
it. We therefore consider it worthwhile to investigate parallel preprocessing algorithms as well.  
 
Challenge 3. Devise new parallel preprocessing techniques that, with knowledge of the type of 
decomposition being used, simplify a problem instance such that the overall performance of the 
solver is increased. ●●●○○ 

Improved Knowledge Sharing 

Modern SAT solvers generate conflict clauses to prevent the reoccurrence of a conflict and to back-
jump effectively in the list of decisions. Recent parallel solvers have leveraged these clauses by 
sharing them. Since search can generate a large (exponential) number of new clauses, strategies 
were defined to limit the overhead of communication. 
 
The most basic strategy limits the size of the shared clauses up to some fixed limit. This has two 
advantages. It restricts the overhead, and focuses the cooperation to powerful clauses.  
 
However, the static-size strategy can miss situations where more cooperation would help, for 
instance, when two strategies explore the same subspace. Also, it might maintain useless exchanges 
between strategies which focus on independent sub problems.  



The Integer Factorization 
Problem (IF): Given two 
integers   and   such 
that      , determine 
whether    has a non-trivial 
factor    . 
 

 
To alleviate these problems, (Hamadi, Jabbour, & Sais, 2009) have introduced a dynamic strategy 
which uses Control Theory techniques to automatically increase or reduce the quantity of clauses 
shared between two search efforts. Their technique estimates the quality of incoming clauses as the 
observed performance and uses this information to extend or restrict the cooperation.  
 
Assessing the quality of a clause with respect to its local impact is difficult and a generalization of the 
clause deletion problem in modern CDCL solvers. We think that the community should spend some 
effort to define better quality measures, in order to leverage the benefits of clause-sharing, and we 
therefore propose the following challenge. 
 
Challenge 4. Drive the cooperation through better estimates of the local Quality of incoming 
clauses.   ●●○○○ 

Integer Factorization 

We believe that it is beneficial to the community to contemplate 
solving challenging problems from related areas for which SAT 
solvers may ultimately present an effective solution. Recently 
there has been an increased interest in solving problems related 
to security applications in the SAT community. One problem that 
is particularly challenging and of utmost importance in practical 
security applications, is the (decision version of the) integer 
factorization problem IF.  
 
This problem is known to be in NP and there exists a trivial encoding to SAT, e.g., via the Boolean 
encoding of a multiplier circuit, but the performance of current SAT technology on such formulas is 
not competitive with that of dedicated, sub-exponential algorithms like the quadratic and general 
number field sieve (for an introduction see e.g., (Crandall & Pomerance, 2001). It is typical for these 
dedicated algorithms to require a large number of resources for a long time. For instance, the recent 
success in factoring a 768-bit integer through a distributed number field sieve kept many hundred 
machines busy for almost two years; a total equivalent of fifteen hundred years of computation on a 
single-core processor (Kleinjung, et al., 2010).  
 
We consider IF a prime example of a challenging problem for parallel SAT solving, not only for its 
potential practical implications, but also because advances in this direction would shed more light on 
the structure of NP. Currently, IF is believed not to be NP-complete, but also to lie outside of P. It is a 
candidate for the NP-intermediate complexity class (Ladner, 1975), which, currently, very little is 
known about. Finding practically efficient parallel algorithms for problems in this class would not 
only have a great impact in practice, but for the theory of SAT and parallel algorithms in general. 
 
Challenge 5. Design an encoding of IF instances and a parallel SAT solver that performs 
competitively with dedicated algorithms for IF. ●●●●● 

Specific Encodings 

As a sixth challenge, we suggest to investigate new encodings of the SAT problem. Most SAT solvers 
support only the solving of formulas in CNF form and it is possible that this encoding, while 
convenient, poses a limitation for parallel solvers. For example, it is conceivable that, when many 
processors are employed, a pipelined evaluation of assignments on deep circuits could perform 
better than a CNF encoding with clauses held in the usual watchlists, simply because the 
locking/synchronization overhead on the watchlists grows too quickly as the number of processors is 
increased. 
 



Challenge 6. Devise a new encoding of SAT problems specifically for parallel solvers. ●●●●● 

Starting from Scratch 

Much of the ongoing research in parallel SAT is focused on parallelizing existing algorithms and 
implementations, many of them based on CDCL solvers. We believe that parallelizing existing 
procedures is not the best way to obtain a truly well-performing parallel SAT algorithm. Instead we 
propose to start from scratch and to investigate completely new algorithms and data-structures for 
parallel SAT or to revisit techniques which were deemed inefficient in the past.  
 
The root cause of our suggestion is the fact that most modern sequential SAT solvers are ultimately 
based on Boolean constraint propagation (BCP), which is a P-complete problem and thus suspected 
to be hard to parallelize (Hamadi Y. , 2002). If we think of a CDCL solver as a dynamic decomposition 
of the search-space (through decision variables), then most of the speedups are likely to be obtained 
on this higher level of decomposition and recombination (decision making, conflict analysis and 
sharing), but it might ultimately remain difficult to effectively parallelize the rest of the algorithm. 
Further research into parallelizations of existing solvers may help to gain a better understanding of 
the challenges of parallelizations of P-complete problems, but we believe that it will be hard to 
design algorithms that perform well in practice. It is conceivable that there exist other algorithms 
which are much easier to parallelize.  
 
For instance, it is conceivable that an algorithm based on a reduction to a series of bounded-width 
branching programs would be considerably easier to parallelize, since it is known that branching 
programs of width 5 and of polynomial length recognize exactly those languages in     (Barrington, 
1986); a complexity class for which algorithms are suspected to be easy to parallelize. 
 
Challenge 7. Devise a parallel algorithm for SAT which is not based on a reduction to a (set of) P-
complete problem(s) and that performs en par with or better than parallelizations of CDCL. ●●●●● 

Conclusion 
Today, computers have multiple cores and Cloud computing allows users to cheaply rent virtual 
resources on which to run their applications. Still, most Search researchers restrict themselves to 
sequential algorithms. This is paradoxical, especially when we consider the importance of Search. 
There are two complementary explanations to this situation: The first one lies in the lack of parallel 
programming skills and the second comes from the difficulty of good intuition building.   
 
The first problem is very general and can only be tackled by making progress in Parallel Programming 
Languages and Tools, and an increase in parallelism courses in undergraduate curricula. Difficult, but 
feasible. Solving the second problem is much more challenging. It requires years of practice which 
can only sometimes provide with the expertise and intuition required for significant contributions.  
 
In this paper, we try to address the second point. Our strategy is to share our views and 
understanding of the evolution of parallel search in general and parallel SAT solving in particular. 
From that understanding, we present a list of important challenges. They have different goals and 
different inherent complexities. Our objective is not necessarily to put the community onto them, 
but we believe that by sharing our views we can contribute to fostering an increased interest in 
parallel SAT solving and parallel search in general. We hope that this will eventually result in better 
parallel algorithms that further increase the practical applicability of Search.  
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