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Abstract

Recent advances in software termination analysis have shown that program
termination can be decided efficiently for many practically relevant problems,
despite the fact that the Halting Problem in general is undecidable. This dis-
sertation presents a new algorithm for termination analysis, called Compo-
sitional Termination Analysis, which is based on compositional (or transitive)
transition invariants. This algorithm depends on an underlying ranking relati-
on synthesis engine and this dissertation presents two such engines that are
able to synthesize Bit-Vector ranking relations. This class of ranking relations
is especially important for verification of embedded software or for software
that interacts with hardware, like device drivers.

Furthermore, a method for certification of decision procedures for quantified
Boolean formulae (QBF) is presented; a requirement for one of the ranking
relation synthesis methods and many other applications of QBF. Since deci-
sion procedures for QBF face performance problems in practice, an alterna-
tive and richer logic (quantified Bit-Vector logic with uninterpreted functions)
is proposed. This logic enables decision procedures to be more efficient for
many practically relevant formulas and at the same time it enables a more
convenient and efficient translation of verification and synthesis problems to
the input of the decision procedure.

All of the methods described in this dissertation are compared in a sub-
stantial experimental evaluation which clearly demonstrates the advantages
in runtime or precision of the new methods over existing techniques.






Zusammenfassung

Im Gebiet der Terminierungsanalyse fiir Software gab es in den letzten Jah-
ren groBe Fortschritte auf vielen praktisch relevanten Problemen, trotz der
Unentscheidbarkeit des Halteproblems im generellen Fall. Diese Dissertation
prasentiert einen neuen Algorithmus fir Terminierungsanalyse, genannt Com-
positional Termination Analysis, welcher auf compositional (transitiven) Tran-
sitionsinvarianten basiert. Dieser Algorithmus hangt von einem externen Al-
gorithmus zur Synthese von Rank-Relationen ab und zwei solche Algorith-
men werden vorgestellt. Diese Algorithmen synthetisieren Rank-Relationen
fir Programme mit Bit-Vector Variablen, einer Klasse von Programmen die
besonders im Bereich der Verifikation von embedded und hardware-nahen
Software, wie etwa Gerétetreibern, von groBer Bedeutung ist.

Des weiteren wird eine Methode zur Zertifizierung von Entscheidungspro-
zeduren fUr quantifizierte Boole’sche Formeln (QBF) prasentiert; eine Voraus-
setzung flr eine der Synthesemethoden fiir Rank-Relationen und viele ande-
re QBF-Anwendungen. Da Entscheidungsprozeduren fur QBF in der Praxis
Performanceprobleme aufweisen wird eine alternative Logik (quantifizierte
Bitvektor-Logik mit uninterpretierten Funktionen) vorgeschlagen. Diese Lo-
gik erlaubt effizientere Entscheidungsprozeduren fir viele praktisch relevante
Probleme, wahrend die Ubersetzung von Verifikations- und Syntheseproble-
men zur Eingabe der Entscheidungsprozedur vereinfacht wird.

Alle Methoden die in dieser Dissertation beschrieben werden, wurden einer
umfangreichen experimentellen Evaluierung unterzogen, welche die Laufzeit-
oder Prazisionsvorteile der neuen Uber vergleichbare existierende Techniken
klar aufzeigt.
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Chapter 1

Introduction

From the very beginnings of digital system design the question of whether
a given system or program would always complete its calculation within a
finite amount of time has been of paramount importance to the designers. A
potentially non-terminating (sub-)system or program often implies undesired
consequences for the system it is a part of. For example, a non-terminating
subroutine in a device driver could mean that the device becomes unusable
or that the whole system becomes unresponsive.

With the advent of formal algorithm analysis, it soon became clear that there
is no general solution to this problem: When Alan Turing introduced the Turing
machine as a formalism for programs, he asked for a set of system states to
be declared as final states in every Turing machine. If the machine enters one
of these states, all further execution is suspended, i.e., the machine halts. For
any given Turing machine, the problem of determining whether it terminates
is then simply stated as Does the machine eventually enter a final state for
all possible inputs? In this context, the problem is then called the Halting
Problem.

While the Halting problem has a succinct formulation, it is by no means a
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simple problem. In fact, the problem is undecidable, which means that for
some programs (or Turing machines), it is impossible to find an answer to the
question posed. It is for this reason that the Halting Problem has received
little attention from practitioners for many years. In recent years however,
it has been demonstrated that the problem does have a solution in many
cases that are important in practice. The most important result, which re-
vived this area of research, is the Terminator algorithm by Cook, Podelski
and Rybalchenko [35]. This algorithm first enabled widespread application
of termination provers to large-scale software and it was used to prove ter-
mination of Windows device driver routines, where it found many important
termination bugs.

The Terminator algorithm ingeniously decomposes a given program into
several smaller programs which are then proven to be terminating in isolation,
followed by additional termination checks for combinations of these parts, if
they are necessary. A complete decision procedure cannot exist for an unde-
cidable problem, implying that the Terminator algorithm cannot be complete.
In practice however, it turns out that these cases are rare, making the Termi-
nator algorithm a practical solution to the Halting Problem.

This dissertation presents a new algorithm, dubbed Compositional Termina-
tion Analysis, that is inspired by the Terminator algorithm. It is based on the
observation that intermediate termination arguments often describe transitive
(or compositional) behavior, which allows for an immediate generalization of
the termination argument to the whole program, removing the need for further
checks of ever more intricate combinations of program parts. By recognizing
such cases, Compositional Termination Analysis is able reach a conclusive
result in much less time than the Terminator algorithm requires.

Just like the Terminator algorithm, Compositional Termination Analysis de-
pends on a ranking relation synthesis engine which synthesizes termination
arguments for the intermediate program parts. While this problem is undecid-
able in general too, it is decidable for some classes of programs. This is the
case for finite-state programs, since all potentially suitable ranking relations



could, in theory, be enumerated. The class of finite-state Bit-vector programs
is particularly important in the context of embedded software, where strict
hardware limits have to be respected by the software, especially in terms of
memory consumption. Also, termination of many infinite-state programs de-
pends only on a small part of the program which is often representable by
a finite-state program. Despite the need for termination proofs in embedded
software and operating systems, no bit-precise solutions that faithfully model
over- and underflows in addition and other operators have existed until now.
This dissertation presents two ranking relation synthesis methods for finite-
state programs. Each of them is able to synthesize ranking relations which
are composed of linear functions over Bit-vector variables; the underlying syn-
thesis methods however are fundamentally different: while one of them relies
on a translation of the problem to an equivalent Integer Linear Programming
(ILP) problem, the other creates an equisatisfiable quantified Boolean formula
(QBF).

The Terminator algorithm and Compositional Termination Analysis not only
require an answer to the question of whether a termination argument (a suit-
able ranking relation) exists for some intermediate program. They also require
concrete ranking relations, i.e., not only do they require an answer, but also
a solution. This is trivial in the case of ILP, but highly non-trivial in the case
of QBF. No generally accepted format for QBF solutions exists. This disser-
tation contains a proposal for such a format, which has not only proven to be
useful in practice, but has also uncovered many issues that inhibit efficient
certification of modern QBF decision procedures.

QBF decision procedures face performance problems in practice, but the
logic itself does have a huge number of applications. Motivated by this fact, a
related logic, namely quantified Bit-vector logic, is investigated in this disser-
tation. Experiments on interesting problems (including ranking relation syn-
thesis) indicate that a relatively simple decision procedure, which is capable
of producing solutions in a trivial manner, is up to five orders of magnitude
faster than modern QBF decision procedures. Quantified Bit-vector logic not
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only constitutes a very attractive formalism for a vast number of (low-level)
software and hardware verification problems, but it appears to allow more
practical and efficient decision procedures than QBF.

All of the methods presented in this dissertation are supported by a substan-
tial experimental evaluation. Not only does this evaluation provide a strong
argument for the superiority of the new methods over existing methods in
use, it also makes a case for the feasibility of bit-precise termination proofs in
the software design process. Through the increase in performance obtained
by the methods presented here, checking software for termination before it is
released becomes possible and will, hopefully, become common practice.

Organization. The chapters of this dissertation are organized as follows:
Chapter [2| introduces definitions that subsequent formalizations depend on
and discusses related work that is of interest in the general context of modern
termination proving. Chapter [3]introduces Compositional Termination Analy-
sis and discusses its relation to the Terminator algorithm. Chapter [4]presents
two methods for ranking relation synthesis for Bit-vector programs. One of
these methods requires a certifying solver for the validity problem of quanti-
fied Boolean formulae. Chapter [5] proposes a technique for certification that
may be used for this purpose. In practice however, the resulting ranking re-
lation method suffers from performance problems. A remedy for this problem
is a decision procedure for the satisfiability problem of a related logic pre-
sented in Chapter[6] This decision procedure is, in practice, multiple orders
of magnitude faster than previous approaches and may present an alterna-
tive to other methods based on decision procedures for quantified Boolean
formulae. Chapter [7] presents an experimental evaluation of all the methods
described in this dissertation. Each method is evaluated thoroughly on large
sets of benchmarks, sometimes in multiple configurations, and compared to
state-of-the-art methods from the respective areas. Finally, Chapter 8| con-
cludes and provides an outlook on future research.



Chapter 2

Background

The methods described in later chapters of this dissertation rely on some
fundamental definitions and related work which are covered in this chapter.
The first section of this chapter presents preliminaries on the SAT and QBF
problems, which are commonly used for bit-precise analysis of programs in
general. The second part of this chapter focusses on termination analysis,
providing preliminaries and definitions of terms used in connection with ter-
mination analysis.

2.1 The SAT and QBF Problems

In this dissertation the propositional satisfiability problem (SAT) and the deci-
sion problem for quantified Boolean formulae, commonly abbreviated ‘QBF’,
are frequently referred to. Before these problems can be defined, some pre-
liminary definitions are required:

The set of Boolean values is B and it is equal to { T, L}, where T represents
truth and L represents untruth. The usual Boolean algebra (B, A,V, ) is
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required.

Definition 1 (Literal). A literal represents either a variable or its negation,
denoted v or —wv, forv € B.

An infinite set V' of Boolean variables is assumed. The set of literals con-
tains all of these variables and their negations —v with v € V. As usual, the
notion of negation to is extended to literals and —=—wv is identified with v.

Definition 2 (Clause). A clause is a disjunction of literals and is denoted as
{l1,la,...} forliterals I, Lo, . . ..

Note that the set-theoretic notation for clauses (intentionally) implies that
literals are assumed to be unique within clauses, i.e., the number of occur-
rences of a given literal within a clause is either 0 or 1.

A clause is tautological if it contains a literal and its negation (and therefore
semantically equivalent to T). An empty clause is a clause without literals
(semantically equivalent to L).

Definition 3 (Matrix). A conjunction of clauses is called matrix.

Note that a matrix thus takes the shape A (\/1; ;) for some literals /; ; and
that it is therefore in conjunctive normal form (CNF).

Definition 4 (Assignment). A mapping o : V' — B that maps all variables
that occur in a matrix to values from B is an assignment.

Should the mapping be only partial, i.e., contain only mappings for some
of the variables of a matrix, it is called a partial assignment. For brevity, the
replacement of all variables in a matrix ¢ with their mapped value of some
assignment « is denoted as ¢,,.

Deciding whether a given matrix has a satisfying assignment is the well-
known satisfiability or SAT problem:
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Definition 5 (Satisfiability (SAT) Problem). Let ¢ be a matrix. The SAT prob-
lem is to decide whether there exists an assignment « to the variables in ¢
such that ¢, = T.

Alternatively, the same problem may be stated as deciding the truth of a
formula where all of the variables are quantified existentially, i.e., as 3V . ¢.

Allowing universal as well as existential quantification of the variables results
in quantified formulas:

Definition 6 (QBF). A quantified Boolean formula (QBF) is a concatenation
of a quantifier prefix and a matrix of clausesE]

For the purposes of this dissertation it is enough to consider closed QBFs
in prenex normal form, i.e., every variable is bound by a quantifier and quan-
tifiers appear only in one (linear) quantifier prefix.

In order to define the semantics of a QBF, let the function Q: V' — {3,V}
be a function that marks variables either as existential (3) or as universal (V).

Definition 7 ([-], Semantics of a QBF). The semantics [¢] of a QBF ¢ is
defined recursively by expanding the outermost variable v of ¢ as follows. If
Q(v) = 3 then define [¢] as [¢{v + L}] V [¢{v < T}], where the cofactor
o{v < ¢} is ¢ in which every occurrence of v is replaced by the Boolean
constant c. If on the other hand, 2(v) =V, then [¢] = [¢{v + L} A[¢{v <

T

More precisely, for ¢ = L, clauses containing —v are deleted and v is re-
moved from all clauses, and similarly for c = T. Note that empty clauses
(respectively empty QBFs) are equivalent to the Boolean constant L (respec-
tively T) as defined above.

The validity of QBFs is often of importance; the corresponding decision
problem is defined as follows:

'In the literature, this type of formula is sometimes referred to as a quantified SAT or QSAT
formula.
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Definition 8 (QBF Validity Problem). The QBF validity problem is to decide
whether [¢] = T for arbitrary QBFs ¢.

It is helpful for our investigation to define an ordering of the variables in a
QBF according to the order of the variables in the quantifier prefix:

Definition 9 (QBF Variable Ordering). Let v1, vo € V. The ordering < is
defined such that v1 < v iff vy is in the scope of vy, i.e., ‘larger’ variables
appear after ‘smaller’ ones in the quantifier prefix of a QBF.

The function €2 and the ordering < are extended to literals in the natural way,
i.e., Q(—wv) = Q(v), while leaving the ordering of the two literals of a variable
undefined. Naturally, a variable is called innermost (resp. the outermost) if it
is maximal (resp. minimal) among all variables of the QBF with respect to the
order <.

2.1.1 Q-resolution

Kleine Blining et al. [64] describe a resolution-like calculus to determine QBF
validity. To this end, they define a new operation called Q-resolution, which
is a slight variation of propositional resolution that makes use of the fact that
literals over universally quantified variables may be removed from a clause if
no larger existential literals appear in the clause:

Lemma 1 (Forall-reduction [64]). LetC be an arbitrary clause, and let (1) =
V forsomel € C. IfVl' e (C'\1).l' <, thenC =C\1.

Therefore, if a clause C' contains a universal literal [ that is larger than all
existential literals in C, it can be removed from C. The process of removing
literals according to this rule is called forall-reduction [14,/64]. And it can of
course be applied repeatedly:

Definition 10 (Forall-reduct). The result obtained from repeated application
of forall-reduction to a clause C' until no more literals can be removed is called
the forall-reduct of C.
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Using forall-reduction, Q-resolution can be defined as follows:

Definition 11 (Q-resolution [64]). Two non-tautological clauses C' and D can
be resolved iff there exists a literal | such thatl € C and -l € D. The
result of Q-resolution is the forall-reduct of (C'U D) \ {l,—l}, which is called
a Q-resolvent (or a Q-resolvent clause).

Exhaustive generation of all Q-resolvents results in a sound and complete
algorithm for the QBF validity problem [64]. The Q-resolution rule may also be
coupled with a complete search algorithm, which is the basis for many QBF
solving algorithms usually called QBF-solvers (e.g. [12,/141/50]).

2.1.2 Satisfiability Modulo Theories

In this dissertation, frequent reference is made to so-called Satisfiability Mod-
ulo Theories (SMT) solvers or the SMT Library. These solvers are SAT de-
cision procedures which are extended to handle richer logics by the use of
(sometimes external) theory decision procedures. SMT solvers find a solution
to the propositional skeleton of a formula, leaving only a set of theory-specific
formula atoms to be decided by the external theory solver.

The SMT Library is a collection of logics defined over a small set of back-
ground theories. With each of those logics a set of benchmarks is associated
and an annual competition (SMT-COMP) is held to determine the state of the
art in solving these problems. In the context of this dissertation, the theory
of quantifier-free Bit-vectors, or SMT QF_BYV, is of importance. This theory
allows formulas over variables that range over Bit-vectors of some fixed size
and gives an interpretation to the usual Bit-vector operations like addition and
multiplication (with overflow), and the bit-wise logical operations. A precise
definition and the associated benchmarks is available at the web-site of the
SMT Initiative at http://www.smtlib.org/l
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2.2 Termination

2.2.1 Preliminaries

In this section notation for programs and their basic properties are defined.
Programs are modeled as transition systems, abstracting from the many dif-
ferent types of instructions in actual programming languages.

Definition 12 (Transition System). A transition system (program) P is a three
tuple (S, I, R), where

e S is a (possibly infinite) set of states,
e [ C S is the set of initial states,

e R C S x S is the transition relation.

Were one to execute such a program, it would start in one initial state so € 1.
Thereafter one or more transitions may become enabled in R, i.e., (sg,s1) €
R for some s; € S. This represents a transition of the system from state
5o to state s; (for nondeterministic systems, there may be multiple s1). The
following definition captures this more formally.

Definition 13 (Computation). A computation of a transition system is a se-
quence of states sg, s1, ...such that sy € I and (s;,s;+1) € R foralli > 0.

Note that a computation is not required to be finite. If a program allows
infinite computations, it is clearly not terminating as there is at least one com-
putation which continues indefinitely. Therefore, termination of a program is
defined as follows.

Definition 14 (Termination). A program is terminating if and only if all its
computations are finite.

To analyze programs it is necessary to reason about the behavior of the
program in general. This means that it is sometimes not enough to reason



2.2. TERMINATION 11

about the transition relation by itself. Instead, a means of reasoning about
multiple steps or even an infinite number of steps is required. This is achieved
through the notion of the transitive closure of a relation.

Definition 15 (Transitive Closure). Let R : X x X be a binary relation. The
transitive closure R™ of R is defined as

Rt =|J R,

ieN
where R° = R and

R =R"1uU {(331,332)‘3(1}3 e X. <$1,$3) e RIA (%3,.%2) S Ri_l)} .

Intuitively, R™ is the set of all possible multi-step transitions of the sys-
tem, e.g., if a program allows only the computation sg, s1, s2, then R =
{(50,51), (81, 52)} and BT = {(s0, 51), (51, 82), (50, 52) }.

Additionally, a variation on the transitive closure which is also reflexive is
required:

Definition 16 (Reflexive Transitive Closure). The reflexive transitive closure
R* of a binary relation R : X x X is defined as

R*=RTU{(x,2)|lz € X}.
These definitions enable precise definition of the states that a program is
able to reach.
Definition 17 (Reachable States). The set of reachable states of a program
(S, I,R) is R*(I) ={s|3i € I . (i,s) € R*}.
Correspondingly, the set of reachable transitions is defined as follows.

Definition 18 (Reachable Transitions). The set of reachable transitions of a
program (S, I, R) is defined as

Ry ={(s1,82) | (s1,82) € RAJsg € . (s0,81) € R"}.
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2.2.2 Proving Termination

A straightforward approach to proving termination is to construct a so-called
ranking function, an idea which was suggested by Turing in 1949:

Finally the checker has to verify that the process comes to an
end. Here again he should be assisted by the programmer giving
a further definite assertion to be verified. This may take the form
of a quantity which is asserted to decrease continually and vanish
when the machine stops. [99]

The continually decreasing quantity is a function that has as its domain the
state space of the program S (a configuration of a Turing machine) and as its
range, the rank, the natural numbers. The signature of this function therefore
is f : S — IN. The important requirement on this function is that its value
decreases with each step of the program (Turing machine) in every compu-
tation. If it is possible to construct a function that fulfils this requirement, the
program clearly is terminating, as the rank can never decrease beyond 0.

This intuitive idea about termination proving is formalized via the notion of
well-foundedness of relations, a concept due Marimanoff [73]:

Definition 19 (Well-foundedness). A binary relation R : X x X is well-
founded (wf.) iff every non-empty subset of X has a minimal element m
with respect to R, i.e.,

VSCPX). S#0=3meS.VseS.(s,m)¢ R,

where P(X) is the power set of X .

Well-foundedness ensures that a relation does not allow any infinitely de-
scending chains. This maps directly onto infinite computations of programs:

Lemma 2. [f the transition relation of a program is well-founded, the program
is terminating.
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Proof. Every computation sq, s1, 2, ... represents a series of sets of states
So = {s0}, S1 = {so0,s1}, S2 = {s0, $1, 82}, - ... Since R is well-founded,
each of those sets has a least element m; € .S; with respect to R. In the case
of Sy, the least element is trivially so. Since (sg, s1) € R, s1 can not be the
least element of S;. This applies to all further sets as well, s.t., sy must be
the least element of the computation. The same argument applies recursively
from s;. O

As is apparent from the definition of well-foundedness, any sub-relations
R’ C R of a well-founded relation R are also well-founded. To prove termi-
nation of a program with transition relation R, it is therefore enough to find a
well-founded relation T that is a superset of R.

Corollary 1. Let P = (S,I,R) and R C T. If T is well-founded, P termi-
nates.

In practice, it is often easier to construct a well-founded 7' that covers R
than to directly prove R well-founded. Since T is also a binary relation and it
is usually constructed with the help of ranking functions it is called a ranking
relation. It is thus Turing’s suggestion to construct a well-founded ranking
relation to prove program termination. In the rest of this dissertation, this
approach is therefore referred to as Turing’s method:

Theorem 1 (Turing’s method). The program (S, I, R) terminates iff

a7 . T DO Ry AT is well-founded .

Note that the implication indeed holds in both directions, as a well-founded
T does not exists for (reachable parts of) transition relations that allow in-
finitely descending chains.

Since it is generally considered hard to construct a suitable well-founded
relation for Turing’s method, Podelski and Rybalchenko propose a different
approach based on a slightly weaker notion than well-foundedness:
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Definition 20 (Disjunctive well-foundedness [82]). A binary relationT : X x
X is disjunctively well-founded (d.wf.) if it is a finite union of well-founded
relations, i.e., T = J;"_, T;.

A union of well-founded relations is not, of course, well-founded in general.
To prove termination of a program (S, I, R) it is therefore not enough to show
that there exists a disjunctively well-founded 7' that covers R;. Instead, a
slightly different notion is required:

Definition 21 (Transition Invariant [82]). A transition invariant T' for program
P = (S,I,R) is a superset of the transitive closure of the reachable transi-
tions, i.e., Rf C T.

Podelski and Rybalchenko then show that disjunctive well-foundedness of
a transition invariant is equivalent to program termination. The distinctive
feature of this method is the use of disjunctive well-foundedness; it is therefore
referred to as the disjunctive method in this dissertation:

Theorem 2 (Disjunctive Method [82]). A program P = (S, I, R) is terminating
iff there exists a d.wf. transition invariant for P, i.e.,

3T . T 2 R AT is disjunctively well-founded .

When comparing Turing’s to the disjunctive method, the trade-off between
the two becomes apparent: Turing’s method requires a T which covers (in the
worst case) R, while the disjunctive method requires a T" which covers (in the
worst case) R, where the latter is usually much larger than R. Should it be
required, the inclusion is also harder to verify in an automated fashion. On
the other hand, Turing’s method requires 7" to be well-founded, while the dis-
junctive method requires only disjunctive well-foundedness, which is usually
easier to establish by construction.

An algorithm that uses the disjunctive method to its advantage is the Termi-
nator algorithm, proposed by Cook et al. [34]/35] and depicted in Algorithm ]
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input : Program (S, I, R)
1 7:=10
2 while True do

/+ Binary Reachability Analysis =/
3 | ifRf CTthen
4 ‘ return terminating
5 else
6 ‘ p = abinary relation s.t. p C R} butp ¢ T
7 end
/* Ranking Relation Synthesis */
8 if p is not well-founded then
9 ‘ return non-terminating
10 else
1 W .= aranking relation, i.e., p C W and W wf.
12 T=TUW
13 end
14 end

Algorithm 1: The Terminator Algorithm [35].

This algorithm iteratively constructs a disjunctively well-founded termination
argument 7" and to that end, it requires two crucial components: A means
to check the inclusion of the transitive closure of R in T (at line 3) and to
construct a ranking relation W (at line 11).

The first of these components is (in practice) implemented using a Reach-
ability Checker (a form of Model Checke/ﬂ). The reachability checker takes
as input a program (S, I, R) and a set of ‘safe’ states 7 € P(S). It then
proceeds to check whether there exists a computation of the program that
reaches a state that is not in 7, i.e., an ‘unsafe’ state. If this is the case, it
returns the corresponding computation as a proof of violation of the property.
This computation is then called a counterexample.

2For an introduction to Model Checking see [25].
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Definition 22 (Counterexample). A counterexample for program (S, I, R)
with respect to a safety property = € P(S) is a computation sg, s1, ..., Sy
where sy € I, each (s;,s;1+1) € R, and s,, ¢ 7.

A counterexample exists whenever R*(I) ¢ w. For the Terminator algo-
rithm however, a reachability checker is not applicable, because 7' is a binary
relation. Therefore, Cook et al. propose the concept of Binary Reachability
Analysis [35]. In this method, the input is a program and a binary relation T’
that serves as the property. The Binary Reachability Analyzer then searches
for a computation of the program which contains a transition not contained in
T. More precisely, a computation sq, s1, . . ., s, iS @ counterexample in Binary
Reachability Analysis iff (s;,s,) ¢ T for some i < n In practice, Binary
Reachability Analysis is usually implemented using a traditional reachability
checker, which is possible through instrumentation of the input program. This
transformation is explained in great detail by Cook et al. [35].

The Terminator algorithm iteratively constructs a termination argument T'
with the help of Binary Reachability Analysis. Initially, an empty termina-
tion argument is used, i.e., Ty = 0. Then, Binary Reachability Analysis ex-
tracts a counterexample, i.e., it finds a computation of the program which
is not contained in 7. From this counterexample, a binary relation p con-
taining all transitions that occur in the counterexample is obtained, i.e., p =
{(s0,81);---,(Sn—1,5n)}, which is a subset of R}r and not a subset of T, as
required by line 6 of Algorithm

If there is no such counterexample, termination is proven as the require-
ments for application of Theorem 2| are fulfilled. Otherwise, a well-founded
ranking relation W that includes p is constructed. Finally, the current ter-
mination argument is updated disjunctively, i.e., T;11 = T; U W, preserving
disjunctive well-foundedness of T'. The process is then repeated until no more
counterexamples are found.

3Note that the literature sometimes (erroneously) refers to the Terminator algorithm as Binary
Reachability Analysis.
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The Terminator algorithm has been put to the test in various tools, most no-
tably in TERMINATOR [35], ARMC [83], and in a termination prover developed
for the experiments conducted for this dissertation.

2.2.3 Ranking Relation Synthesis

Automation of both methods for termination proving discussed in the previous
section require an algorithm that constructs ranking relations (7'). While no
general solution exists to this problem (due to the undecidability of the halting
problem), some solutions have been proposed for decidable subclasses of
this problem.

In the following chapters of this dissertation, deeper knowledge is required
about a method for complete synthesis of ranking functions (and relations)
for linear programs; a proposal by Podelski and Rybalchenko [82]. In their
setting, ranking functions are generated for transition relations of the form
R C Q™ x Q™ which are described by systems of linear inequalities:

R(z,2') = Az + A2’ <b (A, A Q" be@h),

where z,2’ € Q" range over vectors of rationals. Other transition rela-
tions have to be encoded into such systems, which, in practice, involves
an approximation of program behavior. The ranking functions derived are
linear and have the codomain Q* = {z € Q| z > 0}, which is ordered by
y < z=y+ 6 < z for some rational § > 0. Ranking functions r : Q* — Q™
are represented as r(x) = kx + ¢, with » € Q™ a row vector and ¢ € Q. Such
a function r is a ranking function with the domain (Q*, <) if and only if the
following condition holds:

Ve, o' € Q" R(x,2') = kzr+c¢>0A
kx’ +c¢>0A (2.1)
k' + 6 < kx
where the first two conjuncts of the right hand side of the implication encode
that the function must be bounded from below and decreasing.
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Coefficients k for which equation [2.1]is satisfied can be constructed using
Farkas’ lemma, of which the ‘affine’ form given in [89] is appropriate).

Lemma 3 (Farkas’ lemma). Suppose A € Q"** is a matrix, b € Q™ a vector
such that the system Ax < b of inequalities is satisfiable, c € QF is a (row)
vector, and § € Q is a rational. Then

{reQ: Az <b} C{r e Q":cx <5} (2.2)

if and only if there is a non-negative (row) vector v € Q" such that vA = ¢
and~yb < 6.

Using this lemma, a necessary and sufficient criterion for the existence of
linear ranking functions can be formulated:

Theorem 3 (Existence of linear ranking functions [82]). Suppose that the
transition relation R(x,x') = Ax + Az’ <b is satisfiable. R has a linear
ranking function r(z) = kx + c iff there are non-negative vectors A1, Ay € Q¥
S.L.:

MA =0, M —X)A=0, MA+A)=0, Ib<O.

In this case, m can be chosen as Ao A’x + (A1 — A2)b.

This criterion for the existence of linear ranking functions is necessary and
sufficient for linear inequalities on the rationals, but only sufficient over the in-
tegers: there are relations R(z,z') = Az + A’z’ < b for which linear ranking
functions exist, but the criterion fails, e.g.:

R(z,2') = z€[0,4 A2’ >022+09A2 <02+ 1.1.

Restricting = and z’ to the integers, this is equivalentto x = 0 A 2’ =1 and
can be ranked by r(xz) = —x + 1. Over the rationals, the program defined
by the inequalities does not terminate, which implies that no ranking function
exists and the criterion of Theorem [3fails.
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2.2.4 Rewriting Systems

Over the past decades, considerable research effort went into analysis and
construction of reduction or rewriting systems. Such systems present an al-
ternative formalism in which the results discussed in this dissertation may be
stated in. This section discusses the general subject of termination analysis
of rewriting systems and relates it to the definitions given earlier as well as an
overview of the relationship between the two formalisms and their respective
properties. To this end, a definition of a specific class of rewriting systems
over terms is required:

Definition 23 (TRS). A Term Rewriting System (TRS) is a pair (4, —) where
A is the set of terms over some signature 3. and variables V', and the rewrite
relation — is a binary relationon A, i.e., —» C A x A.

As is common practice, (z,y) €— is abbreviated as x — y. Atermz € A
is called reducible iff there is a term y € A such that + — y and z is called
irreducible (or in normal form) iff it is not reducible. A term y € A is called
a successor of another term z € A iff 2 5 y, where % is the transitive
symmetric closure of —, i.e., when there exists a chain of intermediate terms
such that = — ... — y. The reflexive transitive symmetric closure of — is
denoted as - and defined as 5 U {(z,x) | x € A}. Twoterms z,y € A are
called joinable, denoted as «x | y iff there exists a third term z € A such that
T zA Y 5 2.

Many interesting problems can be stated in the form of a TRS of which
some property is to be established. Typical properties include confluence
and termination, defined as follows:

Definition 24 (Confluence). A TRS (A, —) is confluent iff for all z,y,z € A
we have thatz = y Az = z impliesy | z.

Intuitively, a confluent TRS ensures that no matter how paths diverge from
some term z, they join at some common successor. Confluence ensures that



20 CHAPTER 2. BACKGROUND

every element of A has at most one normal form, an often desired property.
However, establishing confluence is in general undecidable, in the simplest
case because the relation — may allow infinite chains of applications which
makes it impossible to decide whether two elements have a common succes-
sor. Rewriting systems which do not allow such chains are called terminating:

Definition 25 (TRS Termination). A TRS (A, —) is terminating iff there is no
infinite (descending) chainx € A -y € A — ...

A TRS is called convergent if it is both, confluent and terminating.

Clearly, the notion of a terminating TRS is very similar to that of a termi-
nating program as defined in Section Indeed, the two are equivalent
since Turing machines (deterministic and non-deterministic) can be encoded
as term rewriting systems and vice versa. A Turing machine can be encoded
as a TRS by encoding configurations of the machine as terms over variables
representing the cells of the tape and the control state of the machine and by
defining an according reduction relation that modifies a given term to repre-
sent the configuration after an initialization step, right move, or left move of
the machine has taken place. In this fashion, it is possible to encode every
Turing machine M into a corresponding TRS R, such that R, is terminating
iff M is terminatingE] Consequently, term rewriting systems may be chosen
as an alternative basis for designing termination proving procedures.

Most techniques for proving termination of term rewriting systems are based
on the same principle as Turing’s method, i.e., by finding a well-founded or-
dering > of the program states. In the terminology of rewriting systems, this
means that = C A x A is a relation over terms. A popular choice is to assign
a natural number ¢(t) to every term t € A such that the natural order < can
be employed to obtain a ranking relation. The function ¢ is sometimes called
a measure function which is of course synonymous with a ranking function. In
general, terminating infinite state systems may require a well-founded order-
ing not representable by a mapping into natural numbers. Ordinal numbers,

4See Chapter 5 in [3] for a precise definition of this transformation.
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as suggested by Turing [99], may be a remedy. However, natural numbers
are sufficient for finitely branching rewriting systems, i.e., for systems where
every term has only a finite number of successors (cf. Lemma 2.3.3 in [3]).
This is especially significant in the context of this dissertation as the focus
is on bit-vector programs, for which a corresponding TRS is always finitely
branching. Dershowitz [39] provides a survey of the fundamental techniques
of termination proving for rewrite systems.
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Chapter 3

Compositional Termination
Analysis

This chapter presents a new method for proving termination of programs
called Compositional Termination Analysis. It is based on the Terminator al-
gorithm by Cook, Podelski and Rybalchenko [35]. The distinctive features of
Compositional Termination Analysis are 1) the use of compositional (transi-
tive) transition invariants and 2) the use of a bounded analysis of the state
space of programs. Both of these features allow for an increase in perfor-
mance as exhaustive analysis of intermediate relations or programs is often
considerably less demanding than in the Terminator algorithm.

3.1 Motivation

Substantial progress towards the applicability of procedures that compute ter-
mination arguments for industrial code was achieved by the Terminator algo-
rithm, proposed by Cook, Podelski, and Rybalchenko [35]. Their approach

23
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combines detection of ranking relations for program paths with Binary Reach-
ability Analysis. The key concept of the algorithm is to encode an interme-
diate termination argument into a program annotated with a (binary) asser-
tion, which is then passed to a reachability checker. Any counterexample for
the assertion produced by the reachability checker contains a path that vi-
olates the intermediate termination argument. The counterexample path is
then used to compute a better termination argument with the help of methods
that synthesize ranking relations for program paths.

Experiments with different implementations have shown that the bottleneck
of this approach is Binary Reachability Analysis [33,|35]: Cook et al. report
more than 30 hours of runtime for some of their benchmarks, while the time
for synthesizing ranking relations for a given program path makes up less
than 1% of the runtime [35], i.e., it is insignificant in comparison. This prob-
lem unfortunately applies to both instances of finding a counterexample to an
intermediate termination argument and to proving that no such counterexam-
ple exists. Part of the reason for the difficulty of the safety checks is their
dual role: they ensure that a disjunctively composed termination argument
is correct and they need to provide sufficiently deep counterexamples for the
generation of further ranking relations.

Example 1. Consider the following trivial example:

1 int i=0;

2 while i<255 do
3 i++;

4 end

where i may be considered either a bounded or an unbounded integer.

To prove termination of this program a d.wf. transition invariant for the loop
must be constructed. Binary Reachability Analysis very quickly finds a po-
tentially non-terminating path, i.e., a path not included in the (initially) empty
termination argument. Usually, the first counter-example it finds executes the
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loop once. Modern ranking function synthesis tools (e.g., |81]) are able to
find a ranking function along the path of this counter-example in a negligible
amount of time.

Now, consider the same example as a part of a large program. In this
case, computation of a path to the beginning of the loop may already exceed
the computational resources available. In the terminator algorithm, termina-
tion is also proven by showing absence of counterexamples through Binary
Reachability Analysis. The consequence is that for complex loops contain-
ing many (non-deterministic) branches, the underlying reachability checker is
confronted with a very hard problem.

This chapter proposes a new algorithm for termination analysis called Com-
positional Termination Analysis (CTA) which addresses the issues identified
with the Terminator algorithm as follows: 1) A light-weight criterion for termi-
nation based on compositionality of transition invariants is used. 2) Instead
of using full counterexample paths, the algorithm applies the path ranking
procedure directly to increasingly deeper unwindings of the program until a
suitable ranking argument is found.

Furthermore, soundness of CTA is proven and (relative) completeness is
discussed. The techniques presented here were initially published in [67].

3.2 Theory

Much of the theory in this section depends on the relational composition op-
erator o for two relations A, B : X x X. It is defined as

AoB:={(s,s")|3s".(s,s") € An(s",s') € B} .

Note that a relation R is transitive if it is closed under relational composition,
i.e., when Ro R C R. To simplify presentation, R’ is defined to represent
repeated application of the relation compositional operator to R and itself,
i.e., R := Rand R" := Ro R"~! for any relation R : X x X.
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Just like in the Terminator algorithm, disjunctively well-founded transition
invariants are the core of the algorithm proposed here. However, a trivial
subclass is especially important:

Definition 26 (Compositional Transition Invariant). A d.wf. transition invariant
T is called compositional if it is also transitive, or equivalently, closed under
composition with itself. i.e., when T o T C T|T]

A compositional transition invariant is also well-founded (not only disjunc-
tively well-founded), since it is an inductive transition invariant for itself (cf.
Corollary 1in [82]). Using this observation and Theorem[2] implies the follow-
ing corollary:

Corollary 2. A program P terminates if there exists a compositional transition
invariant for P.

In Binary Reachability Analysis, the reachability checker needs to compute
a counterexample to an intermediate termination argument, which is often
difficult. The counterexample begins with a stem, i.e., a path to the entry point
of the loop. For many programs, the existence of a d.wf. transition invariant
does not actually depend on this entry state. For example, termination of the
trivial loop in Example [f]does not actually depend on the initial value of 4, nor
does it depend on the concrete upper limit 255. The assurance of progress
towards some upper limit is enough to conclude termination.

The other purpose of the reachability checker in the Terminator algorithm is
to check that a candidate transition invariant indeed includes R . To this end,
note that the (non-reflexive) transitive closure of R is essentially an unwinding
of program loops:

RT=RU(RoR)U(RoRoR)U...=[JR'.
=1

' The term compositional is used instead of transitive for transition invariants in order to com-
ply with the terminology in the existing literature [82]. In the remainder of this dissertation, rela-
tions are called transitive and transition invariants are called compositional.
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Instead of searching for a d.wf. transition invariant that is a superset of R,
the problem can therefore be decomposed into a series of smaller ones. Con-
sider a series of loop-free programs in which R is unwound k times, i.e., the
program that contains the transitions in R' U ... U RF.

Lemma 4. Let P = (S,I,R) and k > 1. If there is a d.wf. relation T}, with
Ule R' C T}, and Ty, is also transitive, then Ty, is a compositional transition
invariant for P.

Proof. The goal is to show that T}, is a transition invariant for P, i.e., R}f CTy.
Let (z,2') € R} . There must exist a path over R-edges from z to 2’. Let [ be
the length of the path, i.e., (z,2’) € R'. Note that R C T}, and thus, R C T}.
As Ty is transitive, T}, C T. O

This suggests a trivial algorithm that attempts to construct d.wf. relations
T; for incrementally deep unwindings of P until it finally finds a transitive Tk,
which proves termination of P. However, this trivial algorithm need not ter-
minate, even for simple inputs. This is due to the fact that any 7; does not
necessarily have to be different from a previous 7T, where j < ¢. In this case
the algorithm will never find a compositional transition invariant.

What follows is a variation of this trivial algorithm that does not suffer from
these limitations and takes advantage of the fact that most terminating loops
encountered in practice have transition invariants with few disjuncts. This
requires exclusion of computations of the program that have been proven
terminating in a previous iteration. The following lemma provides a basis for
this operation:

Lemma 5. Let P = (S,I,R) and k > 1. LetT),...,T; be a sequence
of d.wf. relations such that each is a superset of the respective U;:l R re-
stricted to reachable transitions that are not contained in any previous T3,
ie.,

i

i—1
UrR\UT | n(® 1) xR (1) CT; .

j=1
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IfQ := Ule T; is transitive, then Q) is a compositional transition invariant for
the program P.

Proof. We have |J¥_, R' C |JI_, T = Q and in particular R C Q. Therefore
RT C Q™. Since Q is transitive it follows that BT C Q. Itis d.wf. as it is a
finite union of d.wf. relations. O

As an optimization, intermediate transition invariants may safely be omitted
while searching for a compositional T}:

Lemma 6 (Optimization). LetTy,..., Ty be the sequence of d.wf. relations
for application of Lemmal[ The claim of the lemma holds even if some of the
Ty, ...,T,_1 are empty.

Proof. The goal is to show that @ is a transition invariant for P. Let (z,2’) €
R*™ N (R*(I) x R*(I)). As in the proof of Lemma (z,2") € R for some
I. The claim holds trivially for [ < k as Ule R" C Q. Forl > k, note that
(z,2') € (R* o RI=7%) and 0 < [ — jk < k for some j > 1. Note that
R* C @7 and Rk C Q. Thus, (2,2') € (Q70Q) = Q. AsQ is
transitive, Q1 C Q, and thus (z,2') € Q. O

As an example, in the experimental evaluation of this algorithm in Chapter[7]
only those T; where i is a power of two are used.

Algorithm [2| presents Compositional Termination Analysis (CTA). This algo-
rithm constructs termination arguments such that the prerequisites of Lemmalg|
are fulfilled whenever it returns ‘Terminating’ at line 10. It makes use of an
external ranking procedure called rank, generating d.wf. ranking relations for
a given set of transitions, or alternatively a set C' € S of states such that
R*(C) contains infinite computations, i.e., C'is a set of initial states that allow
non-terminating behavior.
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input : P = (S, I,R)
output: ‘Terminating’ / ‘Non-Terminating’
begin

while true do
(T;,C) = rank (Uj_; B\ T) N (X x X));
if C N R*(I) # 0 then
‘ return ‘Non-Terminating’;
else if C = () and T U T; is transitive then
‘ return ‘Terminating’;

else
X =X\C;
T:=TUT;;
i =1+ j, where j > 0;
end
end

end

Algorithm 2: Compositional Termination Analysis

The procedure rank is sound if it always returns either:

e a d.wf. transition invariant 7; for its input and an empty set C, or

e an empty T; and a non-empty set of states C' C S.

It is considered complete if it terminates on every input.

Algorithm [2|maintains a set X C S that is an over-approximation of the set
of reachable states, i.e., R*(I) C X. It starts with X = S andat: = 1.
While iterating over ¢, it generates d.wf. ranking relations T; for the transitions
in U;Zl RI\ T. As such relations continue to be found, they are added to 7.
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Once the algorithm establishes that T" is compositional, the algorithm stops,
as P terminates according to Lemmal[6l When ranking fails, i.e., when T; is
empty for some i, the algorithm checks whether there is a reachable state
in C. In this case R*(C) contains a counterexample to termination and the
algorithm consequently reports P as non-terminating. Otherwise, it removes
C from X, which represents a refinement of the current over-approximation
of the set of reachable states.

Remark. The check in line 9 of the algorithm corresponds to checking
whether T'oT' C T for some relation 7" : S x S. This corresponds to checking
validity of

Ve,y € S. (z,y) €ToT = (z,y) €T,

which, in the case of symbolically-represented relations, can be established
using one call to a suitable decision procedure (usually a SAT or SMT solver).

3.3 Soundness & Completeness

Compositional Termination Analysis crucially depends on an external rank-
ing procedure rank. Soundness of the algorithm is affected by the choice
of ranking procedure. No checking is carried out that transition invariants 7;
returned by rank actually contain the input given to rank, and there is no
check that disallows non-empty sets C' which contain infinite counterexam-
ples. The soundness of the algorithm therefore depends on the soundness of
the ranking procedure:

Theorem 4. Assuming the sub-procedure rank is sound, Algorithm [3 is
sound.

Proof. When the algorithm returns ‘terminating’ (line 10), the sequence of
relations 7; constructed so far is suitable for application of Lemmal |6} which
proves termination of P (assuming soundness of rank). It is easy to see that
the set R*(I) in Lemma E]can be over-approximated to X, i.e., it applies to
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P if it applies to the temporary program (S, X, R). If the algorithm returns
‘non-terminating’ at line 8, it has found a set of reachable states from which
infinite computations exist (again assuming soundness of rank), i.e., there
exists a concrete counterexample to termination. O

Lines 12—14 of Algorithm [2| ensure progress between iterations by exclud-
ing unreachable states (C) from the approximation X and adding the most
recently found T; to T. However, for non-terminating input programs, the
algorithm may not terminate for two reasons: a) rank is not required to termi-
nate, and b) there may be an infinite number of iterations. This is not the case
for finite .S, since sound and complete ranking procedures exist (e.g., [33,81]
and the following chapter of this dissertation). Progress towards the goal can
thus be ensured:

Corollary 3. If the sub-procedure rank is sound and complete for finite-state
programs, then Algorithm|3 is sound and complete for non-terminating finite-
state programs.

Proof. First, assume a non-terminating input program P = (S, I, R). As S
is finite there must exist a looping counterexample with a finite stem, i.e., a
computation sg, s1, ..., s, where s, = s; for some ¢ < n. In each iteration,
either T increases or X decreases, as C N X = () (assuming soundness
and completeness of rank). Thus, the algorithm will eventually consider an
unwinding long enough to contain the stem, at which point rank returns a C
with C'N R*(I) # 0 (since it is sound and complete). In both cases, progress
is ensured because rank always returns a d.wf. ranking relation or a non-
empty set C. In the worst case, the number of iterations is equal to the length
of the shortest counterexample to termination. O

Note that the algorithm is not complete for terminating programs even if they
are finite-state. This is due to the fact that 7" is not guranteed to ever become
transitive, even if it contains R+.
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3.4 Discussion & Related Work

A consequence of the incompleteness CTA on terminating finite-state pro-
grams is that it may in fact perform worse than other termination proving al-
gorithms, i.e., it may not terminate for inputs that other algorithms analyze
quickly. In practice however, there is a trade-off between the number of suc-
cessful termination proofs and the time required to obtain them. Suitable
transition invariants are usually small, have few disjuncts and often are com-
positional. Conversely, cases in which a compositional transition invariant
cannot be found are rare and therefore only few termination proofs are lost
due to this incompleteness.

The practical advantage of Compositional Termination Analysis is increased
performance over other algorithms whenever compositional transition invari-
ants are found (when using the same sub-procedures for ranking and reach-
ability checks). This is due to the bounded number of unwindings analyzed in
every iteration of Algorithm 2| (line 6), which enables a considerable increase
in performance over running the reachability checker on the original program.

A second advantage of CTA is that it uses an abstraction-refinement ap-
proach to track the reachable states of a program. In practice, termination
of many loops does not depend on the entry-state of the loop; in fact it may
be easier to establish a compositional transition invariant if the rest of the
program is not taken into account. Abstraction-refinement, however, is not a
new idea. lts advantages have been exploited in many contexts (important
examples in this context are reachability checking algorithms based on the
counter-example guided abstraction refinement paradigm [24]). Furthermore,
this idea has been exploited in the Terminator algorithm in the form of Weak
Binary Reachability Analysis [35]: In this variation of the algorithm, each loop
in a program is first analyzed in isolation (starting from a non-deterministic
entry state) and only if termination cannot be proven for one or more loops is
the whole program analyzed.

Example 2. As a demonstration of the runtime-advantage of CTA over the
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Terminator algorithm, consider the following simple program, where x repre-
sents non-deterministic choice.

1inti=";
2 while i<255 do
3 if “then
‘ ii=i+1;
else
‘ i=i+2;
end
end

0w N o O b

The state space in this example is S = Ny, and i is the only variable. A
suitable wf. transition invariant is {(i,i') € S% |i < i’ Ai’ < 256}, which
is easily generated within a negligible amount of time. The Terminator algo-
rithm subsequently needs to verify the absence of further counterexamples,
which requires 14 refinement iterations when the SATABS predicate abstrac-
tion engine [27] is used for the Binary Reachability check. Compositional Ter-
mination Analysis returns immediately after synthesizing the ranking relation,
because it is transitive.

Termination analysis has its roots in the work of Turing [98.[99]. Since then,
substantial progress has been made in various areas of computer science:
logic programming (e.g., [28,71]), term rewriting-based analysis (e.g., [47}
96]), and functional programming (e.g., [69]).

The algorithm presented here (CTA) focusses on the iterative construction
of a termination argument for a full program. However, it does make use
of an external sub-procedure for ranking individual paths. Suitable methods
have been developed independent of this dissertation (e.g., [17}/30,[31},/81]).
Chapter [4] presents a specialized method for finite-state programs.

CTA is largely based on d.wf. transition invariants and the Terminator algo-
rithm [34}35]. The basis for reasoning about transition invariants, including the
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result that d.wf. transition invariants can be used to show termination [82]. The
Terminator algorithm [35] has its theoretical roots in an abstraction-refinement
approach to termination proving presented by the same authors [34].

Compositionality of transition invariants is defined by Podelski and Rybal-
chenko [82]. They remark that a ‘perhaps curious consequence’ of compo-
sitionality of a d.wf. transition invariant is that it is also well-founded. CTA
depends crucially on this remark, as well-foundedness of a disjunctively well-
founded transition invariant is used as a criterion that terminates the analysis.

Cook et al. [32] present a method that under-approximates the weakest
precondition of paths to find a condition for termination. This result may be
exploited in the context of CTA as well, as it allows for a generalization of path
preconditions, e.g., when rank finds a non-empty but unreachable counterex-
ample set C, this set may be enlarged such that a better refinement of the
over-approximation X in Algorithm|2]is achieved.

Berdine et al. present an algorithm for proving termination that is based
on abstract interpretation [13]. Using an invariance analysis they construct
a variance analysis. They use the fact that the transitive closure of a well-
founded relation is also well-founded to show that the fixed-point obtained by
their analysis is correct. Their result may be used to improve the overall per-
formance of CTA, as it can be modified to generate d.wf. transition invariants
via abstraction.

Biere, Artho, and Schuppan propose an encoding of liveness properties into
a (binary) assertion [15]. This approach allows proving termination of pro-
grams without a ranking procedure. It has been reported to prove termination
of programs that require non-linear ranking functions. However, experiments
conducted for this dissertation indicate that the reachability checks required
by this method are usually very hard (see Chapter[7]and [33]).



Chapter 4

Bit-Vector Ranking Relation
Synthesis

Modern termination provers for imperative programs based on the Terminator
algorithm, or Compositional Termination Analysis (Chapter [3), compose ter-
mination arguments by repeatedly invoking ranking relation synthesis tools.
Such synthesis tools are available for numerous domains, including linear and
non-linear systems, and data structures. They construct complex termination
arguments that reason about the heap as well as linear arithmetic, nonlinear
arithmetic, or both.

Efficient synthesis of ranking relations for machine-level bit-vectors, how-
ever, has remained an open problem. Today, the most common approach
to creating ranking functions over machine integers is to use tools actually
designed for real or rational arithmetic. Because such tools do not faithfully
model all properties of machine integers (especially overflows), it is possi-
ble that invalid ranking relations can be generated (for both, terminating and
non-terminating programs), or that existing ranking relations are not found.

35
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unsigned char i;
while (i!=0)
=0 & (i—1);

Figure 4.1: Code fragment from the Windows AGP Driver library
(kernel/agplib/init.c).

Both phenomena lead to incompleteness of termination provers: verification
of programs which do terminate might fail.

This chapter considers the termination problem as well as the synthesis
of ranking functions for programs written in languages like ANSI-C, C++, or
Java. The crucial feature of these languages is that they provide bit-vector
arithmetic over fixed-width words (16, 32, 64, or more bit), and usually sup-
port both unsigned and signed datatypes (usually represented using the 2’s
complement).

Two new algorithms for ranking relation synthesis for bit-vector programs
are presented: (i) a complete method based on a reduction to Presburger
arithmetic, and (ii) a template-matching approach for predefined classes of
ranking functions, including an extremely efficient (but incomplete) method
based on a transformation to the SAT problem.

To understand the complexity of the problem, consider the following exam-
ples. The programs in these examples are extracted from Windows device
drivers and illustrate the difficulty of termination checking for low-level code
and the intricacies handling overflow arithmetic.

Example 3. The program in Figure iterates for as many times as there
are bits set (to true) in the variable i. Termination of the loop can be proven
by finding a (decreasing) ranking function. To find a suitable function for this
example, it is necessary to take the semantics of the bit-wise AND operator &
into account, which is not easily possible in methods based on real or rational
arithmetic. Here, a possible ranking function is the trivial function r(i) = 1,
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unsigned long ulByteCount;
for (int nLoop = ulByteCount;
nLoop; nLoop —= 4) { [...] }

Figure 4.2: Code fragment from a Windows audio device driver
(audio/gfxswap.xp/filter.cpp).

unsigned char Index;
unsigned int Head, i;

assume(Index != ((Head — 1) & 31));

i = Head;
while (i!=Index)
i = (i+1) & 31;

Figure 4.3: Code fragment from the Windows AC97 driver
(audio/ac97/wavepcistream?.cpp).

because the resultof i & (i—1) is always in the range [0, i — 1] (except when
i = 0, but the loop guard prevents the loop from being entered in this case).
Therefore, the value of (i) decreases with every iteration, but it can not
decrease indefinitely as it is bounded from below (at 0, since i is unsigned).

Example 4. The program in Figure is potentially non-terminating, be-
cause the variable nLoop might be initialized with a value that is not a mul-
tiple of 4, so that the loop condition is never falsified. For a correct anal-
ysis, it is necessary to consider that integer underflows do not change the
remainder modulo 4. Ignoring overflows, but given the information that the
variable nLoop is in the range [—23!,231 — 1] and is decremented in every
iteration, a ranking function synthesis tool might incorrectly produce the rank-
ing function (nLoop) = nLoop.
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Example 5. The program in Figure [4.3 contains another example of poten-
tially non-terminating bit-vector code. This code does not terminate when
Index > 31. If this invariant is established by the rest of the program lead-
ing to the loop, the program terminates and r(i) = —1i is a suitable ranking
function to prove termination.

The rest of this chapter is organized as follows: Section defines bit-
vector programs. Section presents a method for ranking relation syn-
thesis based on a reduction to Presburger arithmetic. Section presents
an approach based on template-matching for predefined classes of ranking
functions.

The results presented in this chapter were first published in [33].

4.1 Termination of Bit-Vector Programs

While the methods presented here are intended for analysis of programs writ-
ten in languages like ANSI-C, C++ or Java, the presentation benefits greatly
from an abstraction from the concrete syntax and datatypes used in those lan-
guages. This section introduces a minimal language for bit-vector programs.
Naturally, real-world programs can be reduced to this language. In practice,
this is done by the termination analyzer, which may possibly also deal with
abstractions and other transformations.

Bit-vector programs consist of only a single loop, possibly preceded by a
sequence of statements called the stem). Note that this is not a restriction
for two reasons: (i) Any program may be converted to a single-loop program
(see, e.g., [1])), and (ii) ranking relation synthesis is only required to handle
single-loop programs when used in the context of Terminator-like algorithms,
because the counterexamples extracted always represent a single-loop pro-
gram with a stem.

The bit-vector program syntax used here permits guards (assume (t)), se-
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quential composition (3; ), choice (8 O «), and assignments (x :=t). Pro-
grams operate on global variables = € X', each of which ranges over the
set B*(®) of bit-vectors of (fixed) width a(x) > 0. The syntactic categories
of programs, statements, and expressions are defined by the following gram-
mar:

(Prog) ::= (Stmt) repeat { (Stmt) }
(Stmt) :=skip ‘ assume ((Ezpr)) | (Stmt); (Stmt) ‘ (Stmt) O (Stmt) ’ z = (Ezpr)
(Ezpr) =0, ‘ 1, ‘ ‘ * | T | cast,, ((Ezpr)) ’ —(Expr) | (Ezpr) o (Ezpr)

Because the width of variables is fixed and does not change during program
execution, it is not necessary to introduce syntax for variable declarations.
Expressions 0,, 1,,... are bit-vector literals of width n, the expression x,,
non-deterministically returns an arbitrary bit-vector of width n, and the opera-
tor cast,, changes the width of a bit-vector (cutting off the highest-valued bits,
or extending with zeros as highest-valued bits). The semantics of the bitwise
negation operator — and of the binary operators

o {+ x,+,=<s<u &, |, K>}

follows convention. Adding further operations, e.g., bit-vector concatenation,
is straightforward and therefore omitted. When evaluating the arithmetic op-
erators 4+, x, +, <, and >, both operands are interpreted as unsigned inte-
gers. In the case of the strict ordering relation <, (resp., <, ) the operands are
interpreted as signed integers in 2’'s complement format (resp., as unsigned
integers).

The colon operator, as in t : n, indicates that the expression ¢ is correctly
typed and denotes a bit-vector of width n. In the rest of this chapter, it is
always assumed that programs are type-correct. (For the complete set of
typing rules see Appendix [Al)

The state space of programs S is defined over a (finite) set X’ of bit-vector
variables with widths « and consists of all mappings from & to bit-vectors of
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the correct width: S = {f € X — Bt |Vz € X . f(z) € B*®)}. The transi-
tion relation defined by a statement 3 is denoted by Rz € S x §. In par-
ticular, the transition relation for sequences is defined as Rg,.s,(s,s’) =
3s” . Rgp,(s,s") A Rg,(s",s"). The loop repeat { 8} is non-terminating un-
less 3 contains guards, e.g., repeat { assume (v < 104(5)); T := = + @) }
is the program that counts until  has reached (at least) 10.

Example. Consider the program given in Figure [4.2] Using unsigned arith-
metic (and —4 = 232 — 4 mod 23?), the corresponding bit-vector program is

repeat {
assume (nLoop # 0) (4.1)
nLoop := nLoop + (2°% — 4)

}

4.1.1 Complexity

A bit-vector program f3; repeat { v } terminates iff there is no infinite sequence
of states ag, a1, az, ... € S with Rg(ao, a1) and R, (a;, a;41) forall ¢ > 0. Bit-
vector programs do not provide a heap or recursion and therefore belong to
the class of constant memory programs. This means that the memory con-
sumption is defined upfront and does not depend on program inputs. The
termination of such programs is decidable, more precisely, it is PSPACE-
complete: polynomial memory is needed in the size of the program and the
size of the program’s available memory.

Lemma 7. Deciding termination of bit-vector programs is PSPACE-complete
in the program Iengt plus ", cx a(z), i.e., the size of the program’s avail-
able memory.

"The number of characters in the program text. Here, a unary representation is used for the
index n of the operators 0y, 15, . .., %5, and cast, is assumed.
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Proof. The proof is split into two parts: the termination problem for bit-vector
programs is first shown to be in PSPACE and then shown to be PSPACE-hard.

Termination is in PSPACE. To see that the termination problem for bit-
vector programs is in PSPACE, consider an encoding of a bit-vector pro-
gram « into a QBF of polynomial size in the size of « and the program’s
available memory. Because the validity problem for QBFs is in PSPACE [95],
this shows that program termination for bit-vector programs is in PSPACE as
well. The construction is based on the classical proof that QBF is PSPACE-
complete [95] and uses a technique called “squaring abbreviation.”

First, assume that the transition relations Rg, R, of a bit-vector program j3;
repeat { v } are encoded as quantifier-free boolean formulae ¢g(z,z") and
¢ (x, ). Note, that the encoding can be chosen such that the size of ¢5(x, z’)
and ¢ (z, z’) is polynomial in the size of 3, v. Now, a predicate reach(a,b,n)
with the intended semantics “the statement ~ can reach the state b from
state a in at most 2" steps” may be constructed. A naive recursive defini-
tion of reach(a, b,n) is:

reach(a,b,0) =a =0V ¢,(a,b)
reach(a,b,n) = Jc.reach(a,c,n — 1) A reach(c,b,n — 1)
Expanding reach(a, b, n) in this way will obviously lead to a formula that is

exponential in size, but that only contains existential quantifiers. Instead, uni-
versal quantifiers may be used to compress the formula:

reach(a,b,0) = a=">bV ¢4(a,b)

a’za/\b’zc\/a’zc/\b’zb)

h(a,b,n) = Ic.Va', V.
reac (a, 7n) cva, (% reach(a',b',n* 1)

Because there is no right-hand side with more than one occurrence of reach,
this leads to a QBF of a size polynomial in n and the size of ~ defining
reach(a,b,n).
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The predicate reach can now be used to encode termination as a QBF: due
to the finiteness of the state space, it is sufficient to construct a formula that
states the absence of lassos in the transition graph. Assuming that the state
space has 2" elements (i.e., n is the sum of the bit-widths of the variables
declared in the program), the corresponding formula is:

—3a, b, ¢, d. (ps(a,b) A reach(b, c,n) A ¢ (c,d) A reach(d, c,n))

Overall, the size of the formula is polynomial in n and the size of 3, +y, and the
formula can obviously be generated from 3, v in polynomial time.

Note that this encoding is equivalent to expressing the termination property
as a safety property (e.g, according to [15])), and subsequent application of
the QBF-based Bounded Model Checking technique introduced in [61].

Termination is PSPACE-hard. The proof is via a polynomial reduction of
the validity problem for QBF. Suppose ¢ = Q1z1. - - - Qnx,.¢ is a QBF, where
Q; € {V,3} and ¢ is a matrix. There is a program of polynomial size and
memory consumption (in the size of ¢) that terminates if and only if ¢ is valid.
To this end, let x4, ..., z,, be program variables of bit-width 1, i.e., a(z;) = 1
fori € {1,...,n}. The matrix of psi may be considered an expression in the
grammar defined in Table[4.1] This is not a restriction, because the language
provides the boolean operators & , |, and —.

To write the program checking validity of ¢, further variables are required: a
variable num with a(num) = [logy(n +2)], variables r1, ..., r, with a(r;) =
1, and variables numy, ..., num, with a(num;) = 2.

The validity checker has the following form (for sake of brevity, the bit-widths
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of literals like 55 are omitted):

num = 1; num, :=0; ---; num, :=0
repeat {  assume (num =0 & —ry)
a loop, O loop, O --- O loop,,

O (assume (num = n+1); rpy1 = ¢; num :=n) }

Each of the blocks loop; is responsible for enumerating the possible values of
x; and evaluating the quantifier Q;:

assume (num = i);
( (assume (num; = 0); num; :=1; num =i+ 1; z; :=0)
O (assume (num; = 1); num; :=2; num =i+ 1; r; := 1415 x; := 1)

O (assume (num; = 2); num; :=0; num :=14—1; r; :=1r;07;41) )

where o = & for Q; =V,and o = | for Q; = 3.

Observe that the size of each loop; is logarithmic in n (because numbers
in the range 0,...,n + 1 need to be encoded). The size of all loop, blocks
combined is therefore in O(nlogn), and the size of the whole program is in
O(slog s), where s is the size of the matrix.

The memory consumption of the validity checker is

n variables z;
+ [logy(n + 2)] variable num
+n variables r;
+ 2n variables num;

= 4n + [logy(n + 2)] € O(n)

Finally, it should be observed that polynomial time algorithms for the trans-
formation of QBFs into prenex form, as well as the generation of the validity
checker exist. O
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4.2 Ranking Relation Synthesis via ILP

Ranking relations for bit-vector programs may be synthesized by transforming
the problem to checking satisfiability of a formula in Presburger arithmetic,
which is checked using an intermediate Integer Linear Programming problem.
The method presented here is an extension (or adaptation) of Podelski and
Rybalchenko’s method for synthesis of linear ranking functions over the reals
or rationals (see Section[2.2.3]and [81]).

The first step is to generalize Theorem (3| to disjunctions of systems of in-
equalities over the integers. Subsequently, it is shown that programs defined
by formulas in Presburger arithmetic subsume bit-vector programs. Then, an
algorithm to synthesize linear ranking functions for programs defined in Pres-
burger arithmetic is presented. Finally, the ranking functions that were found
define a ranking relation through the usual < operator.

4.2.1 Linear ranking functions over the integers

In order to faithfully encode bit-vector operations like addition with overflow
(describing non-convex transition relations), it is necessary to consider dis-
junctive transition relations R:
l
R(x,2") = \/ Az + Alx’ < by, (4.2)
=1

where | € N, A;, AL € ZF*" b, € ZF, and x,2' € Z™ range over integer
vectors. Linear ranking functions for such relations can be constructed by
solving an implication like for each disjunct of the relation, as shown
below. There is one further complication, however: Farkas’ lemma, which is
the main ingredient for Theorem 3] is in general not complete for inequalities
over the integers.

Farkas’ lemma is complete for integral systems, however: Ax + A'z’ < bis
called integral if the polyhedron {(7) € Q*" | Az + Az’ < b} coincides with
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its integral hull (the convex hull of the integer points contained in it). Every
system of inequalities can be transformed into an integral system with the
same integer solutions, although this might increase the size of the system
exponentially [89].

This means that Farkas’ lemma does not hold if the unknowns range over
the integers; implied inequalities in this case can in general not be repre-
sented as non-negative linear combinations. Farkas’ lemma still holds, how-
ever, in the special case of integral systems of inequalities. A system Ax < b
is called integral if the polyhedron {z € Q™ | Az < b} coincides with its inte-
gral hull (the convex hull of the integer points contained in it)ﬂ

Lemma 8 (Integral version of Farkas’ lemma). Suppose A € Q"** is a ma-
trix, b € Q™ a vector such that the system Ax < b of inequalities is satisfiable
and integral, ¢ € QF is a (row) vector, and § € Q is a rational. Then

{zeZF . Az <b} C{z e ZF:cx <5} 4.3)

if and only if there is a non-negative (row) vector v € Q" such that vA = c
and~b < 6.

Proof. The goal is to show that (2.2) if and only if in the case of an inte-
gral system Az < b. The conjecture then follows by Farkas’ lemma (Lemma|3).

= (4.3): holds because of Z C Q.

(4.3) = (.2): suppose holds. This implies that the convex hull of
the set {x € Z* : Az < b} is contained in the half-space {z € Q* : cx < §}.
The convex hull of {z € Z*: Az < b} is the same as the integral hull of
{x € Q¥ : Az < b}, which coincides with {z € Q* : Az < b} because Az < b
is integral. Therefore (2.2). O

Transforming an arbitrary system Az < b into an integral system with the
same integer solutions is achieved as follows: first, an equivalent total dual

2This deviates from the terminology in [89], where integrality is attributed to polyhedra. For
the sake of brevity, the same terminology is applied to integral systems of inequalities here.
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integral system A’z <V is derived from Az < b, such that A’ € Z"'**. A
system A’z <V is total dual integral if the duality equation

max {cz: A’z <b'} =min {yb:y >0, yA' = c}

has an integral optimum solution y for each integral vector ¢ for which the
minimum is finite [89]. A’z < b’ can then be strengthened to A’z < |¥’| with-
out losing integer solutions. lterating this procedure eventually leads to an
integral system of inequalities.

Linear ranking functions for systems of inequalities over integers may be
constructed with the help of the integral version Farkas’ lemma (Lemma
and the transformation to integral systems as follows:

Lemma 9. Suppose R(z,x’) = \/i:1 Az + Alx’ < b; is a transition relation
in which each disjunct is satisfiable and integral. R has a linear ranking func-
tion m(x) = rz + c if and only if there are non-negative vectors \i, \, € Q*
fori € {1,...,l} such that:

MAL=0, MNo(A;4+A) =0, Moby<0, (AN —=X)A; =0, MNA =7
(4.4)

Proof. Suppose R(z,z') = \/éz1 Az + Az’ < b; is a transition relation in
which each disjunct is satisfiable and integral. Each direction of the equiva-
lence is shown separately:

=: Assume the relation R(x, ') has a linear ranking function m(z) = rz + c.
Arguing as in the proof [82, Theorem 2], this means that for some ¢ > 0 and
alli e {1,...,1} it follows that

forallz,2’ € Z" : Ajx + Alx’ < b; implies
re+c>0Ara’ +¢c>0Ar2 +6 <rzx (4.5)

By Lem. 8] this implies that there are non-negative vectors \i, \i, € Q" such
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thatfori € {1,...,1}:

MNA; = —r, NAL=0, b < e,
NoA; = —r, No AL =7, Nob; < —6

It is now easy to see that (9) is implied by these equations and inequalities.

«: Assume (@) holds for non-negative vectors A\, Ay € Q* fori € {1,...,1}.
By Theorem foreach i € {1,...,1} the disjunct A;z + A}z’ < b; has a lin-
ear ranking function of the form m;(z) = rx + ¢;, which implies that

m(z) = re +min{c; : ¢ € {1,...,1}}
is a ranking function for R(x, 2’). O

Combined, these results allow the formulation of Algorithm [3|which synthe-
sizes ranking functions for disjunctive integer transition relations.

4.2.2 Ranking functions for Presburger arithmetic

Presburger arithmetic (PA) is the first-order theory of integer arithmetic with-
out multiplication [84]. This section presents a complete procedure to gener-
ate linear ranking functions for PA-defined transition relations by reduction to
Lemmal[9lF|

Suppose a transition relation R(x,x’) is defined by a Presburger formula.
Because PA allows quantifier elimination [84], it can be assumed that R(z, «’)
is a quantifier-free Boolean combination of equations, inequalities, and di-
visibility constraints € | (cz + dz’ 4 e). Divisibility constraints are introduced
during quantifier elimination and state that the value of the term cz + dz’ + e
(with ¢,d € Z", e € Z) is a multiple of the positive natural number e € IN™.

3The procedure can also derive ranking functions that contain integer division expres-
sions LEJ for some e € Z, but it is not complete for such functions. Assuming that a polynomial
method is used to solve (@.4), the complexity of our procedure is singly exponential.
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Input: Transition relation R(z,z') = \/i:1 Az + Alx’ <,
Output: Ranking function m(x) = rz — ¢, or “No linear ranking exists”
1 foreach integral disjunct A;x + Az’ < b; do

if A;xz+ Alx’ <b; has no ranking function ( Theorem@ then
return No linear ranking function exists;

s LWN

5 end

6 while frue do

7 | if there are non-negative vectors \i, \ € QF s.t. holds then
8 ¢+ min{ra’ : Jz.R(z,2")};

9 return m(z) = rx — c is a ranking function;

10 if all disjuncts A;x + Alx’ < b; are integral then

1 ‘ return No linear ranking function exists;

12 Pick a non-integral disjunct A;z + ALz’ < b;;

13 Strengthen A,z + Az’ < b;to A,z + Ajz’ < |b;;

14 if A;x + Alx’ <, is integral and has no ranking ( Theorem@ then
15 ‘ return No linear ranking function exists;

17 end

Algorithm 3: Ranking function synthesis for disjunctive integer transition
relations with iterative strengthening

In order to apply Lemma [9] divisibility constraints must be eliminated from
R(z,2") as explained below. This is possible by introducing auxiliary pro-
gram variables y, 3y’ for each divisibility constraint: The formula R(x,2’) is
transformed to a new formula R’ (x, y, 2, y") which does not contain divisibil-
ity constraints, such that 3y, v'.R'(z,y,2’,y') = R(x, 2"). The transformation
increases the size of the PA formula only polynomially.

By rewriting to disjunctive normalform, replacing equations s = ¢ with in-
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equalities s < t At < s, the relation R'(z,y,2’,y’) can be stated as in (4.2):

! x z’
') = V(D) +a () <o
i=1 Y y

Lemma@] may then be applied to R’ to derive a linear ranking function m/(z, y).
To ensure that no auxiliary variables y occur inm/(x, y) (i.e., m'(x,y) = m(x)),
equations are added to (4.4) that constrain the corresponding entries of r to
zero.

Replacing divisibility constraints by disjunctions of equations

The following equivalences are used in the transformation from R(z,z’) to
R (z,y,2',y'):

S d /
€| (cx+dx' +e) =€ (cx—e{gJ+dz’fe{iJ+e) (4.6)
€ €
d !
= \/ i-e—e:cm—eL%J—&—dm’—etiJ 4.7)
icZ € €
0<i-e—e<2e¢
_ p 0<cxr—ey.<eN0<dax' —ey, <e
= Ely(!7yd~ . o ’ ,
N <\/O§i-efe<2e L €—€=Cx— €Ye+ dx’ — 6yd)
(4.8)

Equivalence holds because divisibility is not affected by subtracting mul-
tiples of € on the right-hand side, while expresses that the value of the
term cx — e[ <F | +da’ — eL‘%/J lies in the right-open interval [0, 2¢). There-
fore, the divisibility constraints of are equivalent to a disjunction of ex-
actly two equations. Finally, the integer division expressions [ “* | can equiv-
alently be expressed using existential quantifiers in (4.8).

To avoid the introduction of new quantifiers, the quantified variables y., v/,
are treated as program variables. Whenever a constraint € | (cz + dz’ + €)
occurs in R(z, z'), new pre-state variables y., yq and post-state variables y.., i/
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are introduced, defined by adding conjuncts to R(z, z'):

R(z,ye,ya, 2", ybsyly) = Rz, 2" )ANO<cx—ey. < e N0 < drx —eyg < e
ANO<ct' —ey. <enO<dr' —ey, <e

In R'(z,Yc,ya,x', Y., y,), the constraint € | (cz + dz’ + e) can then be re-
placed with a disjunction \/_; . .o i € —e=cx — ey, +dx’ — ey, as in
(4.8). Iterating this procedure eventually leads to a transition relation without
divisibility constraints, such that 3y, y'.R'(z,y,2’,y') = R(x, 2’).

Representation of bit-vector operations in PA

Presburger arithmetic is expressive enough to capture the semantics of all
bit-vector operations defined in Section so that ranking functions for bit-
vector programs can be generated using the method from the previous sec-
tion. For instance, the semantics of a bit-vector addition s + ¢ can be defined
in weakest-precondition style as:

Y1 :=8; Y2 =1,
= t -
wp(x :=s+1t,0) wp (gx,(0§x<2”/\2"|(x—y1—y2)/\¢)>

where s : n,t : n denote bit-vectors of length n, and y,, y» are fresh variables.
The existentially quantified formula assigns to x the remainder of y; + yo
modulo 2.

A precise translation of non-linear operations like x and & is achieved
by case analysis over the values of their operands, which in general leads
to formulae of exponential size, but is well-behaved in many cases that are
practically relevant (e.g., if one of the operands is a literal). Of course, this
encoding is only possible because the variables of bit-vector programs range
over finite domains of fixed size.

Example 6. The bit-vector program (@.1) corresponding to Figure[4.3 is en-
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coded in PA as follows:

nLoop #0 A 2% | (nLoop’ — nLoop — 2%? + 4)
A 0 < nloop < 252 A 0< nloop’ < 232

From the side conditions, it can be seen that nLoop’ — nLoop — 232 + 4 has
the range [5 — 233, 3], so that the divisibility constraint can directly be split into
two equations (auxiliary variables as in are unnecessary in this particular
example). With further simplifications, the transition relation is expressed as:

(nLoop’ = nLoop —4 A 0 < nloop’ A nloop < 232)
\Y (nLoop' = nLoop + 232 — 4 A0 < nloop A nloop’ < 232) .

It is now easy to see that each disjunct is satisfiable and integral, which means
that Lemma 9 is applicable. Because the conditions are not simulta-
neously satisfiable for all disjuncts, no linear ranking function exists for this
program.

4.3 Ranking Relation Synthesis via Templates

Ranking functions for bit-vector programs can be identified by templates of a
desired class of functions with undetermined coefficients. In order to find the
coefficients, two methods are presented here: (i) an encoding into QBF to
check all suitable values, and (ii) an encoding into SAT to check likely values.

4.3.1 Arbitrary Ranking Functions

The state space for bit-vector programs is always finite. It is therefore possible
to (explicitly) construct the set of all possible ranking functions for bit-vector
programs of some fixed set of states. In practice, this may be exploited to
search for ranking functions.
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Let R(z,2’) be the transition relation of some bit-vector program. Both,
x and z’ constitute bit-vectors of some fixed size n. Every ranking relation
for this program is therefore a relation » : B” x B™ and there are only 22"
such relations. This set of relations may be represented using the Algebraic
Normal Form (ANF) of functions with n Boolean variables:

ANF(c,z) = co+
Cl.x1+c2...x2+...+cn.1~n

C1,2°T1-To+ -+ Cr1n Tpn-1"Tn+

where each z; represents a single bit extract from the vector z and all ¢ =
{0,¢1,...,¢1,2,... n} are Boolean coefficients. Every Boolean function may
be obtained from the ANF by fixing corresponding coefficients. Therefore, a
ranking relation may be obtained by finding a solution to

JeVa, 2’ . R(z,2') = ANF(c,2") < ANF(c,z) . (4.9)

It is straightforward to flatten Equation into a QBF. Thus, a QBF solver
that returns an assignment for the top-level existential variables is able to
compute suitable coefficients. However, Equation requires a quadratic
number of coefficients and it’s size is exponential in the size of z. In practice,
this is either too large to be constructed or too hard to solve using a QBF
solver. Suitable ranking functions for programs that occur in practice are how-
ever often relatively simple, which is why the next section considers only a
subset of all ranking functions, namely polynomial functions.

4.3.2 Polynomial Ranking Functions

Let = (z1,...,2x|) be a vector of program variables and associate a
coefficient ¢; with each x; € X. The coefficients constitute the vector ¢ =
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(c1,...,¢)x|)- A polynomial template takes the form

| x|
ple,x) = Z (¢; x casty,(x;))
i=1
with the bit-width w > max;(a(x;)) + [logy(|X]| +1)] and a(c;) = w, cho-
sen such that no overflows occur during summation. The following theorem
provides a bound on w that guarantees that ranking functions can be repre-
sented for all programs that have polynomial ranking functions.

Theorem 5. There exists a polynomial ranking function for the transition re-
lation R(z, z'), if

JeVz, 2’ . R(z,2') = p(c,2’) <s ple,x) . (4.10)

Vice versa, if there exists a polynomial ranking function for R(x,x’), then
Equation must be valid whenever

w > max;(a(z;)) - (|JX] — 1) +|X| - logy |X]+ 1.

Proof. The proof is via bounding of the number of bits required to represent
all polynomial functions. To show that the upper bound is reasonably tight, a
lower bound is given first.

Lower bound. Consider terminating programs (for which polynomial rank-
ing functions exist) of the following form:

1 i=1;

2 whilei A0V j#A0VEk#0... do
3
4 k:=k+ (i +255) x (j +255);
5 | ji=j+i+255

6 t:=14+1;

7 end
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where the width of all variables is n. Programs built after this scheme require
ranking functions that order variables lexicographically. A suitable ranking
function is of the form

etep Xkt xjte X,

where ¢; = —1, ¢; = —2", ¢, = —2?", etc. This means that the corre-
sponding bit-widths of the coefficients are a(c;) = 2, a(c¢;) = n + 2, and
a(cx) = 2n + 2. Note that the constant 2 arises from the fact that each co-
efficient is of the form —2® for some z, which is not contained in [0, 2*), and
thus an extra bit is required to represent a coefficient of this size and its sign.

The total number of bits required to represent all coefficients is thus

|x|-1 |x[-1

dien+2=2-|X[+n- > i,
i=0 1=0

which may be rewritten to
(&) (X = 1)

5 .
l.e., the programs considered require O(|X|? - n) bits.

21X +n-

Upper bound. Consider a transition relation R(s, s’) over a vocabulary X of
variables. For sake of simplicity, assume that the bit-width of all | X'| = m vari-
ablesis n, i.e., a(x) = nforall x € X (this means that all variables range over
[0,27)). States s € S are identified with elements of the vector space Q!*!, for
an arbitrary but fixed enumeration z, ..., z,, of the variables X. The candi-
dates for ranking functions are the elements of the vector space V = Q¥ — Q
of rational linear functions over the program variables X’

Every function f € V determines an order < on the state space S:
s<ps = f(s) < f(s)

If <, is a (strict) total order, f is called perfectly separating. If two func-
tions f, f’ determine the same order, i.e., <y=<, they are equivalent. Ob-
viously, as S is finite, V' is partitioned into finitely many equivalence classes
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in this way. Therefore, the problem may be simplified through the following
observations:

e Because functions f, f’ in the same equivalence class can prove the
termination of exactly the same loops, it is sufficient to consider rank-
ing function templates that represent at least one function from each
equivalence class.

e The classes of perfectly separating functions subsume the classes of
non-perfect functions, in the sense that every loop that can be proven
terminating using the latter can also be proven terminating by perfectly
separating functions.

When choosing the bit-width of coefficients in ranking function templates, it is
thus sufficient to ensure that the template represents at least one function in
each class of perfectly separating functions.

The geometry of equivalence classes. There is a simple geometric inter-
pretation of equivalence classes. A non-perfect function f has the property
that f(s) = f(s’) for some states s # s’. Because states are interpreted as
vectors, this is equivalent to f(s — s’) = 0. For any two states s # s’ € S,
observe that the set E; o = {f € V : f(s — ') = 0} is a hyperplane of the
vector space V, which altogether means that the set of non-perfect functions

is the finite union
E= |J B~
s#s'€S
of hyperplanes. The inverse P = V' \ E is then a finite union of open convex

sets, each of which forms the interior of a convex (but unbounded) polyhe-
dron.

These polyhedra coincide with the equivalence classes of perfectly sep-
arating functions. To see this, note that for each state s € S the function
vs : V= Q, vs(f) = f(s) is continuous. This implies that if f, f' € V are per-
fectly separating functions that are not equivalent, every continuous path from
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f 1o f/in V has to cross E. Furthermore, the classes belonging to different
polyhedra are distinct: for each hyperplane E; 4, it holds that f(s —s’) >0
for the functions f on one side of the hyperplane, and /(s — s’) < 0 for the
functions f’ on the other (because f(s — s’) is linear in f), which implies
s<ysands’ < s.

Choosing representatives. To distinguish a basis of the vector space V,
define states sq,..., s, € S by:

()={" 77
S;\Xy5) =
’ 0 otherwise

The basis {b1,...,b,} € V of Vis then defined (as the dual basis) by:
1 i1=3
bi(s;) = .
0 otherwise

This allows the representation of functions in f € V as a1b1 + -+ - + aynbm,
which intuitively can be understood as

f(xla e ,.Im,) = oxrr+ -+ AU Tm,

Now, consider linear combinations with integer coefficients a, . . . , a,,. Bounds
on the absolute values of the coefficients must be derived, such that elements
from each class of perfectly separating functions can be represented. These
bounds determine the number of bits needed in polynomial ranking function
templates.

First, fix a non-empty class A C V of perfectly separating functions, and
assume that E/ C F is the union of all hyperplanes E; ¢ that bound A. Each
intersection of m — 1 such hyperplanes (provided that no two of them are
parallel) is a straight line [ that is adjacent to A. It remains to be shown that:

(i) Eachlinelis generated by a function
fl :a1b1+"'+ambm

where |o;| < 27m=1 . (m — 1) fori € {1,...,m}.
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(i) The set A contains a function
fA = 61b1 + - +ﬂmbm
where |3;] < 27(m=1 .l fori € {1,...,m}.

To see that (i) holds, note that each hyperplane E . is described by a linear
equation f(s — s’) = 0 that can be expanded to

(5(1’1) — S/(Il))’Yl —+ -+ (5(-77”1,) - SI(IM))Vm =0

if the representation f = v1b1 + - - - + v by, is chosen. The coefficients are
then of the form s(x1) — s/(x1) in these equations and they are in the range
[-2™ 4 1,2™ — 1]. Finding a vector in the intersection of m — 1 hyperplanes
requires a solution to the following system of m — 1 linear equations:

vivi 4 4ol ym =0

O o g =0

By elementary algebra, an integer solution to this system can be found by
computing the following determinant (S,, is the group of permutations of
{1,...,m}, and the parity sgn(o) is +1 for even and —1 for odd permuta-
tions o):

’Ul Ul

! m m m—1 )
T = 30 3 sm(o)( T v )
1 m i=1 o€S,, j=1

by b o(m)=1i

Because of |v/| < 2" and |S,,| = m!, the absolute value of the coefficient of
each basis vector b; on the right-hand side is bounded by 2(™=1) . (m — 1)!.

For (ii), assume that there are m linearly independent lines {4, ..., [, (asin
(i)) that are adjacent to A. In this case, because A is convex, there is a sum

fa=cfy+-+emh, €A,
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with ¢; € {—1,+1} foreachi € {1,...,m}. The bounds on the absolute val-
ues of coefficients follow from (i). A similar argument can be used in the case
that no m linearly independent lines exist.

From (i), we can derive the number of bits needed for Theorem
log, (27D o) = n(m —1) +logy,m! < n(m — 1)+ mlog, m

Because both positive and negative coefficients have to be represented, we
need a further bit for the sign, which yields the bound n(m — 1) + mlog, m + 1
given in Theorem 5 O

Despite much progress, the capacity of QBF solvers has not yet reached a
level where Equations [4.9) or [4.70| can be solved quickly. Therefore, a third,
simplistic, option is considered here: enumeration of likely coefficients. First,
restrict all coefficients to a(c;) = 2 and fix a concrete assignment v(c) €
{0, 1, 3} to the coefficients (corresponding to {—1,0, 1} in 2's complement).
Negating and applying ~ transforms Equation |4.10|into

—3z,2" . R(z,2") A =(p(vy(c),z") <s p(y(c),x)) , (4.11)

which is a bit-vector (or SMT QF_BV) formula that may be flattened to a purely
propositional formula in the straightforward way. The formula is satisfiable iff p
is not a genuine ranking function. Thus, we enumerate all possible v until we
find one for which Equation [4.11]is unsatisfiable, which means that p(y(c), z)
must be a genuine ranking function for R(xz, z’). Even though there are 3/?!
possible combinations of coefficient values to test and only a very small sub-
set of all polynomial ranking functions can be represented, this method per-
forms surprisingly well in practice (see Chapter|[7).

Example 7. Consider the program given in Fig. The only variable in the
program is i, and it is 8 bits wide. The symbolic polynomial for this program is
p(c, 1) = ¢ X casty (i) with a(c) = 9. For the only path through the loop in this
example, the transition relation R(i,i') ist # 0Ai' =i & (i — 1). Solving the
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resulting formula
Vi, i’ . R(i,i") = p(e,i’) <s plc,i)

with a QBF-Solver does not return a result within an hour. Alternatively, the
formula may be rewritten according to Equation to obtain

=3i,i" . R(i,i") A =(p(c,i’) <s ple,i))

which is solved using a SAT-solver for all choices of ¢ € {0, 1,3} in negligible
runtime. The formula is unsatisfiable for c = 1, which means that castg (19 x %)
is a suitable ranking function. (In this particular example, it is possible to omit
the cast, i.e., a suitable ranking function is simply (i) = i.)

4.4 Related work

Numerous efficient methods are now available for finding different classes of
ranking functions (e.g., [4,/18.42,/82]). Some tools are complete for the class
of ranking functions for which they are designed (e.g., [82]), others employ a
set of heuristics (e.g., [4]). None of these methods supports the generation of
ranking functions for machine-level integer programs.

Bradley et al. [18] give a complete search-based algorithm to generate linear
ranking functions together with supporting invariants for programs defined
in Presburger arithmetic. This is also a key component of the first method
presented here (Section 4.2.2), the method proposed here however, uses
constraint-based means to synthesize linear ranking functions for programs
using Presburger arithmetic. It is worth noting that the methods presented
here are decision procedures for the existence of linear (polynomial) ranking
functions, while others procedures (e.g., [18]) are sound and complete, but
might not terminate when applied to programs for which no linear ranking
functions exist.
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Ranking function synthesis is not strictly required if the program is a finite-
state system. In particular, Biere, Artho and Schuppan describe a reduction of
liveness properties to safety by means of a monitor construction [15]. The re-
sulting safety checks require a comparison of the entire state vector whereas,
in practice, the safety checks when using ranking functions refer only to few
variables. Experimental results indicate that the safety checks for ranking
functions are in most cases easier (see [33] and Chapter|[7).

Another approach for proving termination of large finite-state systems was
proposed by Ball et al. [6]. Their method creates finite abstractions of a sys-
tem, preserving all properties required to prove termination. Techniques to
find suitable abstractions for bit-vector programs are yet to be developed,
however. Furthermore, since this technique does not generate ranking re-
lations, it is not clear whether they can be integrated into systems whose
aim is to prove termination of programs that mix machine integers with data-
structures, recursion, and/or numerical libraries with arbitrary precision, for
which mostly ranking relation-based methods exist.



Chapter 5

Certificates for QBF

The validity problem for the logic of quantified Boolean formulas (QBF) is the
canonical PSPACE-complete problem. A vast number of problems can be
succinctly formulated in QBF. For example, every finite two-player game can
be modeled in QBF [45//94]. A multitude of Al planning [49,/77,/85], and modal
logic problems [68] can be formulated in QBF, as well as unbounded and
bounded model checking for finite-state systems [16,40,61], and other formal
verification problems [10,/49]. In the context of this dissertation, QBF is es-
pecially important as a means to synthesize ranking functions (and relations)
for bit-vector programs as presented in the previous chapter.

There exist many different flavors of QBF solvers, based on different tech-
niques such as DPLL [22,/48l|70,/79.(87},/104], Q—-Resolution [14], BDDs [78],
Skolemization [9]] or Hyper Binary Resolution [88]. These solvers decide the
validity of a QBF, but they do not usually produce any form of proof or cer-
tificate for their solutions. As a consequence the solutions that they compute
are only of limited utility in applications that require some sort of synthesis,
like generating ranking functions or coefficients for ranking relation templates.
Furthermore, these state-of-the-art QBF solvers are not reliable enough, i.e.,

61
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the solutions they compute are often wrong. Results of recent QBF compe-
titions (an annual competition for QBF solvers) demonstrates this fact: the
validity of many hard instances had to be “guessed” by means of a majority
vote of the contestants and the solvers often disagree [75]. Certificates pro-
vide a method to verify these solutions by the means of a (simple) certificate
checker, which potentially reduces the number of discrepancies considerably.

Certificates for the decision problem of propositional logic (the SAT prob-
lem) are easy to define. For satisfiable instances, solvers provide a satisfying
assignment, and in the case of an unsatisfiable instance, a resolution proof
is computed. In both cases, the output can be verified easily by means of
efficient (polynomial time) and easy-to-inspect proof checkers. The satisfying
assignment, or the resolution proof, correspond to a certificate of the correct-
ness of the result. In the case of SAT, these certificates serve many additional
purposes: for example, satisfying assignments are often used as counterex-
amples. Resolution proofs are often used as an input for other algorithms.
As an example, the computation of Craig interpolants relies on a resolution
proof.

A certificate in the context of QBF refers to a proof of validity or invalidity of a
formula. As in the case of unquantified formulas (SAT), certificates can serve
dual purposes: first, they establish trust in the correctness of the result. The
second motivation is to use certificates as input to other algorithms. When
formulating a two—player game as a QBF, the main goal is of course to deter-
mine whether a winning strategy exists. If it does, it is often also interesting
to know what the winning strategy is. Besides knowing that the game can be
won, we want to know how to win it. The same holds for invalid formulas: not
only do we want to know that a formula is invalid, we also want to find out why
there is no solution and we wish to convince ourselves of that fact, preferably,
in a concise way.

As shown by Tseitin [97], allowing definitions of fresh variables in (unquan-
tified) Boolean formulas can exponentially shorten resolution proofs. The
following section presents an extension of Tseitin’s result to the quantified
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setting. This new quantified extension rule enables the definition of a certifi-
cate format which allows extension steps alongside resolution steps in proofs
(Section and is a convenient way to provide models for valid formulas
(Section [5.3). Appendix [B] provides a precise proposal for a certificate for-
mat, which allows variable definitions of predefined structure to simplify the
extension of QBF solvers with certificate generation code.

The results presented in this chapter were first published in [62].

5.1 The Quantified Extension Rule

The resolution calculus for QBF (see Section [2.1.1) is able to simulate the
resolution-based, sound, and complete refutation calculus of Kleine Biining
et al. [64]. This also allows tracing refutation proofs of search-based QBF
solvers (DPLL [22]) efficiently, even with further optimizations such as trivial
falsity [22], SAT and QBF based learning [49,,87,/104], as well as hyper binary
resolution [88].

It is likely that in order to trace other algorithms — for instance, algorithms
that are structural or BDD-based — a much stronger proof system is neces-
sary. One of the main contributions in this chapter is to provide this stronger
proof system by adding the following quantified extension rule (which is an
extension of Tseitin’s corresponding rule for the unquantified case [97]).

Definition 27 (Quantified Extension Rule). Lety be a fresh and existentially
quantified variable, which does not occur in the QBF ¢, and let ) be a formula
that may contain only y and variables in ¢, where x < y for all variables x in.
Furthermore, let there be a satisfying assignment for+ for every assignment
to the variables in ¢. Then the Quantified Extension Rule extends ¢ by i, i.e.,
it adds g conjunctively to ¢. The new variable y is then a defined variable and
1 is a definition fory with respect to ¢.

Note that ¢ does not need to enforce a functional dependency of y on other
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variables in ¢. As a relation, i) must be total, e.g., it cannot define a partial
function, but it may be non-deterministic, e.g., the value of y does not need
to be unique. This is a slight generalization of the classical extension rule for
propositional logic [97].

In adapting the extension rule to the quantified setting, the crucial question
is where to quantify new variables, e.g., how defined variables y are ordered
with respect to variables that already occur in the formula ¢. It seems intuitive
that new variables can only be existential, i.e., Q(y) = 3. It is also clear
that they cannot be outside of the scope of the innermost variable on which
they depend. In the following sections it is required that defined variables
are quantified as far out as possible, i.e., defined variables are required to
be in the scope of the innermost variable they depend on, but not in the
scope of any larger variables. More formally, let X be the set of variables
in ¢, let Y be the set of variables in ¢ and let m = max(X NY). Then
Ve X .2 <m=2x<yAz>m =y < x. Note that this is especially
important in the context of models for QBFs.

To enforce that proofs are polynomially checkable, it is possible to fall back
to the original idea of Tseitin [97] and restrict the set of functions that can
be defined and the way they are encoded in to clauses. Useful functions
are the constants, equality, negation, if-then-else and conjunction. However,
conjunction is sufficient:

Definition 28 (Restricted Quantified Extension Rule). Let !, r be two literals
over variables in the formula ¢, and let y be a fresh variable. Let ) be the
conjunction of the following clauses: (5 V1), (§ V r), and (y VIV F). Itis
required that Q(y) = 3 and that « < y for all variables x in . Then formula ¢
can be extended by adding v while maintaining validity.

The soundness of the restricted rule follows from the soundness of the
generic rule, which is proved next. It turns out that this rule is enough to
produce proofs from refutations of BDD-based QBF solvers (like EBDDRES)
in linear time.
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For the proof of the following theorem a substitution operator with distribu-
tivity (resp. cofactoring) over Boolean operators is required. Substitution is
defined as ¢{z + ¢}, which denotes the formula ¢ where all occurrences of
x are replaced by c and it is required that the following holds for the substitu-
tion operator:

Lemma 10. (¢ A ) {x + ¢} = ¢p{z + c} AN{x + ¢}

The following theorem shows that adding definitions is sound and does not
change the semantics of a formula.

Theorem 6 (Soundness of Quantified Extension Rule). Let ) be a definition
for y with respect to ¢. Then [¢] = [[¢ A ¢].

Proof. The proof is by induction on the number of variables in ¢ A1). Let = be
the outermost variable in ¢ A 1. First, assume that x is different from y, the
variable defined by v, and 2(x) = 3. The definitions and the lemma imply:

[eny] = [oAd)H{z <0}V [(0AP){z - 1}]
= [ofz <0} ngfz < 0} V ¢z 1} Ap{z  1}]
= [o{z < 03] vVig{z < 13] = [¢]

In the next to last step we have to apply the induction hypothesis twice for
the definitions ¢ {z < ¢} with respect to ¢{z < c}. The second case with
Q(x) = Vis identical, except that all the disjunctions are replaced by conjunc-
tions.

For the base case, assume that x = y. From the definition of the extension
rule, it follows that 2(x) = 3, and that = does not occur in ¢. Since all
variables x in ¢ have to be smaller or equal to y, v is either constant or only
contains y as variable. Therefore 1 is either equivalent to T, to the literal
-z, or to the literal x, as otherwise it would be impossible to satisfy ¢ by
assigning avalue to . If ¢ = T, then [¢ A Y] = [[¢ A T] = [¢]. Without loss
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of generality, assume v = x. Then

[o A2] [(@ A ) {z « 03] v [(¢ A p){x < 1}]
[¢p{z < 0} Ap{z < O} V [¢{z 1} Ap{z « 1}]
= [opA{z <0} Vo A{z « 1}]

[on0]VIenl] = [¢]

5.2 Extended Resolution Proofs

The quantified extension rule allows the definition of a new proof system
which contains not only the Q-resolution operation, but also the quantified
extension rule. Let C' and D be clauses in the matrix of a formula ¢ and let ¢
be a definition with respect to ¢. The proof system is then defined as

Cvzx DvVvz ) d NP .
forall — reduce(C' vV D) Q-Resolution " Q-Extension

Some operations which are frequently used by QBF solvers allow reasoning
across quantifier alternations. Examples are universal expansions (in Quan-
tor [14])) and long-distance resolution (in Quaffle [104]). Universal expansion
allows, in principle, a resolution of clauses on outer variables that stem from
different copies of the expanded clauses. Similarly, long-distance resolution
for learned clauses allows to compactly capture the effect of propagating in-
formation from an outer existential scope through a universal quantifier into
an inner existential scope and back to the outer existential scope.

Currently, it is not clear whether these operations can be efficiently simu-
lated using the proof system given here. It is possible that an even stronger
proof system is needed to achieve this.
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5.3 QBF Models

The extended proof system presented in the previous section provides a con-
venient way to obtain proofs for invalid QBFs. For the case of valid formulas ¢,
the straightforward solution is to give a proof of invalidity of —¢. Experiments
in which a formula was negated (obtaining a formula in disjunctive normal
form) and translating back into a CNF using the Tseitin-transformation have
shown that this approach is infeasible in practice. All of the problems that
could be solved within 600 seconds by three different solvers (QUANTOR,
SKizzo, SQUOLEM) could either not be solved within the same time when
inverted, or took considerably more time to solve. (See Chapter[7]for a more
detailed account of this experiment.)

However, the quantified extension rule allows for a convenient definition of
models for QBF. In the unquantified case, a certificate for satisfiability is an
assignment to the variables which makes the formula evaluate to true. In the
case of QBFs, a satisfying assignment for an (existential) variable x depends
on the universal variables x is in the scope of. Therefore, an assignment is a
set of functions instead of a set of values. In the general case, such functions
are called Skolem-functions.

The notion of “satisfying functions” is exploited here to define QBF models:

Definition 29 (Model). Let V; be the set of variables in a formula that have
a quantification level less than or equal to i and let E; and A; be the sets of
existentially resp. universally quantified variables in V;, i.e., B; U A; = V;. A
model M of the formula is then a set of functions

M :={f,, :B*1 = B|v € E,},

where every f,, depends exactly on the k — 1 variables from Vj,_; E]

"It is also possible to let the fv,, depend only on the universally quantified variables of Vj,_;.
However, the definition given here may result in more compact representations of the functions
fuy, in practice.
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This definition is essentially the same as the one used by Kleine Biining and
Zhao [65]. It is also used in the QBF solver sKizzo [11] to certify satisfiable
resp. valid instances. Using the extension rule, however, it is possible to pro-
vide a model as a set of extensions to the formula by defining new variables
representing the values of the Skolem functions. A certificate for the formula
¢ thus contains a series of extensions to ¢, followed by a list of pairs of the
form (v,y,) where y, is the fresh variable that encodes the Skolem-function
for v. As a final step, adding equivalences v = z,, to ¢ for all variables for
which a model function is provided makes the formula evaluate to T if the
model is indeed a correct one.

As mentioned before, new variables have to be ordered carefully. If they are
simply quantified in the innermost scope, the corresponding function could
depend on variables with higher quantification level than the one that it serves
as a model for. For example, in a formula with the quantification sequence
JxVa3y, the newly defined variable y may depend on the value of a, which
may turn the defined function into an invalid model. Therefore, extension
variables must be quantified as low as possible, i.e., immediately after the
variable with the highest quantification level occurring in the extension func-
tion. Checking that a model function does not depend on higher quantification
levels is then trivial, i.e., fast in practice.

However, checking the validity of a model according to Def. [29is a co-NP
complete problem [211/65]. In practice, it is advisable to check each clause is
tautological individually, leveraging incremental SAT solver technology. This
can be achieved by keeping the model functions in a SAT solver that supports
incremental solving and adding the negation of a clause, i.e., the negations
of the clause’s literals, as assumptions. The resulting problem must then be
unsatisfiable, which means that it is impossible to satisfy the given clause
with the model provided. It is possible to provide a refutation proof for each
of those sub-problems (or, alternatively, for the whole formula instead of sep-
arate clauses). The complexity of checking this “annotated” model for validity
is then polynomial in the size of the certificate.
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In Skolemization-based solvers constructing a model is easy, since the
solvers strategy is in fact to construct a model; it just has to dump the Skolem-
functions that it generates (e.g., in the form of BDDs). DPLL- and search-
based solvers split on variables using different strategies. Assuming the for-
mula is valid, the solver always encounters either unit clauses, and propa-
gates this information, or splits on a new variable. Whenever a unit clause (1)
occurs under some variable assignment « to other variables, it can be read
as a = [, which corresponds to one entry in the function table of the model
function for the variable of [. This information can (immediately) be stored as
r; = a1 N ... A\ a,, Where x; is a fresh variable and the a; are the literals from
«. When solving has finished, the final model-functionis f, = x1 V-V .

In Q-Resolution-based solvers (particularly [87,/88]), one can interpret any
resolution between two clauses C' and D into a resolvent as the generation
of a conflicting clause. For instance, if C' contains a literal x and D contains
-z, then =(C\{z}) A =(D\{—z}) may not happen, because x would have
to be T and L at the same time to satisfy both clauses. One strategy to
record a model is to start with over-specified functions and to refine them
whenever resolution is applied. BDD-based solvers implementing the bucket
algorithm [78] (and also EBDDRES) store intermediate BDDs for variables to
be eliminated. From these, it is possible to dump Skolem-functions using the
extension rule. The procedure for EBDDRES is presented in more detail in
Chapter|[7}

5.4 Discussion & Related Work

Currently only two suggestions for QBF certificates exist: One in the form of
an “inference log”, from which a BDD—based model or a refutation for a QBF
can be reconstructed [12], and a method for generating unsatisfiable cores
from traces of search—based solvers [103]. (In the QBF setting—similar to
propositional logic—an unsatisfiable core is a subset of the matrix of an invalid
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QBF formula, which is again invalid.)

The first approach does not scale well in practice because of the growth
of the BDDs. In fact, for some instances it takes considerably more time
to reconstruct the model from the inference log than it took to generate the
model in the first place [12]. The inference log that is provided can serve
as a refutation trace. However, due to five different inference strategies that
the solver (sKizzo) may choose from, there are many different kinds of in-
structions in the inference logs. Among them are context switches between
inference styles, explicit and symbolic variants of inference rules, such as
resolution, substitution, and assignment, but also rollback and commit oper-
ations to undo earlier operations, as well as “other control information” [12].
This set of instructions, tailored to keep the overhead of the solver as small
as possible, results in the need for a heavyweight proof checker.

The second approach provides only an unsatisfiable core and depends on
the particular QBF solver used. In essence, both approaches only “trace”,
what the solver is doing and are thus far from a unified format that could
be used to certify the computation of QBF solvers based on very different
algorithms.

However, the method proposed here is only a first step towards a uniform
format. It clearly lacks the ability to capture important features of certain QBF
solvers, such as long distance resolution [104], and expansion [9,[14]. It is
entirely possible that the quantified extension rule is not enough to linearly
trace the proof process of such solvers.



Chapter 6

Solving Quantified
Bit-Vector Formulas

The complexity of integrated circuits continues to grow at an exponential rate
and so does the size of the verification and synthesis problems arising from
the hardware design process. To tackle these problems, bit-precise decision
procedures are a requirement and frequently the crucial ingredient that de-
fines the efficiency of the verification process.

Recent years have seen an increase in the utility of bit-precise reasoning
in the area of software verification where low-level languages such as C or
C++ are concerned. In both areas, hardware and software design, methods
of automated synthesis (e.g., LTL synthesis [80]) become more and more tan-
gible with the advent of powerful and efficient decision procedures for various
logics, most notably SAT and SMT solvers. In practice, however, synthesis
methods are often incomplete, bound to very specific application domains, or
simply inefficient.

In the case of hardware, synthesis usually amounts to constructing a mod-
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ule that implements a specification [60L/80], while for software this can take
different shapes: inferring program invariants [53], finding ranking functions
for termination analysis [33][811[99] (and Chapter [4] of this dissertation), pro-
gram fragment synthesis [92], or constructing bugfixes following an error-
description [93] are all instances of the general synthesis problem.

In this chapter, a new approach to solving quantified bit-vector logic is pre-
sented. This logic defines a superset of SAT and QBF formulas and allows
for a direct mapping of many hardware and (finite-state) software verification
problems and is thus ideally suited as an interface between the verification or
synthesis tool and the decision procedure.

In many practically relevant applications, support for uninterpreted functions
is not required. In this restricted case, quantified bit-vector formulas are es-
sentially equivalent to QBF. In practice however, QBF solvers face perfor-
mance problems and they are not usually able to produce models for satisfi-
able formulas, which is crucial in synthesis applications. The same holds true
for many automated theorem provers. SMT solvers on the other hand are ef-
ficient and produce models, but usually lack complete support for quantifiers.

The ideas in this chapter combine techniques from automated theorem
proving, SMT solving and synthesis algorithms. A set of simplifications and
rewriting techniques is proposed, transforming the input formula into a set of
equations that an SMT solver is able to solve efficiently. A model finding algo-
rithm is then employed to refine a candidate model iteratively, while function
(or circuit) templates are used to reduce the number of iterations required by
the algorithm.

The results presented in this chapter were first published in [101].
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6.1 Preliminaries

The usual notions and terminology of first order logic and model theory are
adopted. The main interest lies on many-sorted languages and bit-vectors of
different sizes correspond to different sorts. For each bit-vector sort of size n,
the equality =,, is interpreted as the identity relation over bit-vectors of size
n. The if-then-else (multiplexer) bit-vector term ite,, is interpreted as usual,
i.e., as ite(true,t,e) = t and ite(false,t,e) = e. As a notational convention,
the subscript is usually omitted. The 0-arity function symbols are called con-
stant symbols, and O-arity predicate symbols are called propositions. Atoms,
literals, clauses, and formulas are defined in the usual way. Terms, literals,
clauses and formulas are called ground when no variable appears in them.
A sentence is a formula in which no free variables occur. CNF formulas are
denoted as sets of clauses. The symbols a, b and ¢ are used for constants,
f and g for function symbols, p and ¢ for predicate symbols, = and y for vari-
ables, C for clauses, ¢ for formulas, and ¢ for terms. The term z: n denotes
that variable x is a bit-vector of size n. When the bit-vector size is not spec-

ified, it is implicitly assumed to be 32. The expression f: ny,...,nEg — n,
specifies that function symbol f has arity &, it's argument bit-vectors have
sizes ny, ..., ng, and the result bit-vector has size n,..

Dependencies are denoted as ¢[z1, . .., x,], which means that the formula
¢ may contain variables x1, ..., x,. Similarly t[xy,...,2,] is defined for
terms ¢. Where there is no confusion, ¢[z1,...,x,] is abbreviated as ¢[7]
and t[zy,...,x,] as t[z]. Inthe rest of this chapter, the difference between

functions and predicates is trivial; only functions are therefore discussed.

The standard notion of a structure (interpretation) is used. A structure that
satisfies a formula F' is called a model for F'. A theory is a collection of first-
order sentences. Interpreted symbols are those symbols whose interpretation
is restricted to the models of a certain theory. A symbol is uninterpreted
if its interpretation is not restricted by a theory. We use BitVec to denote
the bit-vector theory. The usual interpreted symbols for bit-vector theory are
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used: 4, *,, concatpy n, <n, On, 1, .... Where there is no confusion, the
subscript specifying the size of the bit-vector is omitted.

A formula is satisfiable if and only if it has a model. A formula F' is satisfiable
modulo the theory BitVec if there is a model for { F'} U Bit Vec.

6.2 Quantified Bit-Vector Formulas

A Quantified Bit-Vector Formula (QBVF) is a many sorted first-order logic
formula where the sort of every variable is a bit-vector sort. The QBVF-
satisfiability problem, is the problem of deciding whether a QBVF is satis-
fiable (modulo the theory of bit-vectors). This problem is decidable because
every universal (existental) quantifier can be expanded into a conjunction (dis-
junction) of potentially exponential, but finite size. A distinguishing feature of
QBVFs is the support for uninterpreted function and predicate symbols. This
is useful in many applications, as illustrated by the following example:

Example 8. Arrays can be easily encoded in QBVF using quantifiers and
uninterpreted function symbols. In the following formula, the uninterpreted
functions f and f' are used to represent arrays from bit-vectors of size 8
to bit-vectors of the same size, and [’ is essentially the array f updated at
position a + 1 with value 0:

flla+1)=0A (Vz:8. x=a+1V f'(z) = f()).

Deciding whether a QBF is valid, is a PSPACE-complete problem. Note
that any QBF problem can be easily encoded in QBVF by using bit-vectors of
size 1. The converse is not true, as QBVF is more expressive than QBF. For
instance, uninterpreted function symbols can be used to simulate non-linear
quantifier prefixes. The fragment of first-order logic called EPR (effectively
propositional logic, or the Bernays-Schoenfinkel class of formulas), comprises
formulas of the form 3*V*p, where ¢ is a quantifier-free formula with predi-
cates but without function symbols. EPR is a decidable fragment because
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the Herbrand universe of an EPR formula is always finite. The satisfiability
problem for EPR is NEXPTIME-complete, which is the same for QBVF:

Theorem 7. The satisfiability problem for QBVF is NEXPTIME-complete.

Proof. The proof consists of showing that there is a polynomial reduction from
EPR to QBVF and vice-versa.

QBVF = EPR. Given a QBV formula ¢, w.l.o.g. we assume ¢ is in CNF.
The first step is to flatten every clause in ¢. The idea is to avoid nested
terms by introducing auxiliary variables. Given a clause Vz. C[t], where
t is a nested term, it is converted into VZ,y. y # t V C[y]. Flattening is
applied until all literals in a clause are shallow. For example, the clause
Va1, x2. f(z1,9(x2)) < g(x1) is reduced to

vmlvaay17y27y3' Y1 7& g(‘r2) \/yg # f(‘rhyl) N
ys # 9(x1) Vy2 < ys .

Next, for each uninterpreted function f where the range is a bit-vector of size
n, we create n predicates py,, ..., py,. Each bit-vector variable and constant
is broken into single bits. A disequality of the form = # f(y) is encoded as

((:El = T) ZTOT Py (ylv cee 7yﬂ)) \

((fEm = T) zror pf'm,(y17 cee 7?Jn)) .

Other atoms are encoded in a similar way. Two special constants | and T,
the axiom L # T are added and for each new bit constant ¢, the clause
c= 1 Vc=T is added. For example, in the following QBV formula, assume
all sorts are bit-vectors of size 2:

(Va. f(f(z)) =0) A fla) = 2.

After flattening, this becomes

(Va,y.y # f(z) V fy) = 0) A fla) = 2.
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Then, after breaking the bit-vectors into single bits:

Va1, 22, y1,92. ((y1 = T) wor py, (1, 22)) V
((y2 = T) @or py, (w1, 22)) V
(_‘pfl (yla y2) A py, (ylv ZJQ))) A

“pp(ar,a2) A ppy(ar,az) A

(a1 :T\/a1 :J_)/\

(CLQ:T\/G,Q:J_)/\

T£L.

EPR = QBVF. Any satisfiable EPR formula has a finite Herbrand model.
Moreover, a formula containing n constants has a model with a universe of
size at most n. Therefore, in principle, it should be straightforward to reduce
an EPR formula to QBVF. In principle, this only requires a bit-vector sort of
size [logon]. The main problem in this approach is that the EPR formula
may contain cardinality constraints such as Vx. x = a; V...V 2 = a,,. For
example, this clause is only satisfiable in a model with a universe with size
at most m. Now, assume a formula ¢ with n constants and containing a
cardinality constraint limiting the universe size to m. If m < [logyn], then the
QBVF

Vo : [logon].x =a1 V...V& =ap

is equivalent to false. This problem can be avoided by using an approach
found in several EPR solvers that do not have support for =. These solvers
use the fact that any EPR formula ¢ containing = is equisatisfiable to another
EPR formula ¢’ that does not contain =. The basic idea is to replace = with
a new binary predicate isEq, and include the axioms of equality for it:

V. isEq(z, )

Va,y. —isEq(x,y)VisEq(y,x)

Ve,y,z. nisEq(x,y) V —isEq(y, z) V isEq(x, z)

VZ,y. —isEq(zi,y1) V...V -isEq(z,, yn) V —p(T) V p(7) .
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In fact the last axiom is an axiom scheme and one of them is required for each
predicate p in the formula . O

QBVF can be used to compactly encode many practically relevant verifica-
tion and synthesis problems. In hardware verification, a fixpoint check con-
sists of deciding whether k& unwindings of a circuit are enough to reach all
states of the system. To check this, two copies of the k£ unwindings are used:
Let T'[z, 2'] be a formula encoding the transition relation and I[x] a formula
encoding the initial states of a circuit. Furthermore, let

k—1
Tz, 2') = Tlx, zo] A /\ Tlzi—1, 2] A T[wg—1,2'] .

i=1

Then a fixpoint check for k£ unwindings corresponds to the QBV formula
Va, o' Ia) AT e 2') = 3y,y' Ty ATy, y']

where z, 2/, y, and y’ are (usually large) bit-vectors.

Of renewed interest is the use of symbolic reasoning for code synthesis [92],
loop invariants [29}/53] and ranking functions (Chaper 4] and [33]) for finite-
state programs. All these applications can be easily encoded in QBVF, as
illustrated by the following example:

Example 9. Consider the following abstract program:

pre(z)
while (c(z)) { ' :=T(z) }
post(x)

In the loop invariant synthesis problem, the goal is to synthesise a predicate
I that can be used to show that post holds after execution of the while-loop.
Let, pre[z] be a formula encoding the set of states reachable before the be-
ginning of the loop, c[z] be the encoding of the entry condition, T'|x, x'] be the
transition relation, and post[x] be the encoding of the desired property. Then,
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a suitable loop invariant exists if the following QBV formula is satisfiable:

V. pre[z] — I(s) A
Vo, o' I(x) A clz] ATz, '] = I(z") A
V. I(z) A —clx] — post[x] .

An actual invariant can be extracted from any model that satisfies this formula.

Similarly, in the ranking function synthesis problem, the goal is to synthesize

a function rank that decreases after each loop iteration and that is bounded
from below. This problem can be encoded as the following QBVF satisfiability
problem:

V. rank(z) > 0 A

Vo, x'. clx) ATz, z'] — rank(z’) < rank(z) .
Note that the general case of this encoding requires uninterpreted functions.
The call to rank can not be replaced with an existentially quantified variable,
as it is impossible to express the correct variable dependencies in a linear
quantifier prefix, as is required, e.g., by QBF.

6.2.1 Formula Simplification

Modern first-order theorem provers spend a great deal of their time in sim-
plification or contraction operations. These operations are inferences that
remove or modify existing formulas. To solve QBVFs, several simplification
and contraction rules found in first-order provers are suggested here and
new rules that are particularly useful in common application domains are pro-
posed. These rules help to greatly reduce the size and complexity of typical
QBYV formulas in practice.

6.2.2 Miniscoping

Miniscoping is a well-known technique for minimizing the scope of quanti-
fiers [54]. In implementations this is often applied after converting the formula
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to negation normal form (as is the case in the implementation used for the
experimental evaluation in Chapter [7). The basic idea is to distribute uni-
versal (existential) quantifiers over conjunctions (disjunctions). Formally, the
universal case of this simplification rule is

(Vz.F[z] A G[7]) = (VZ.F[Z]) A (VZ.G[7]) .

The scope of a quantifier may also be limited if a sub-formula does not
contain the quantified variable. That is,

(VZ.F[7] V G) = (Vz.F[z]) V G

when G does not depend on z.

These transformations are particularly important, because it increases the
applicability of rules based on rewriting and macros.

6.2.3 Skolemization

Many first-order theorem provers, eliminate existentially quantified variables
using Skolemization. This transformation converts the formula V. 3y. —p(z)V
q(z, y) to the equisatisfiable formula Vz. =p(z) V ¢(z, fy(z)), where f, is a
fresh function symbol.

6.2.4 Conjunction of universally quantified formulas

Once NNF conversion, miniscoping and skolemization have been applied, it
is helpful to write a QBV formula as a conjunction of universally quantified
formulas:

(VT p1[Z]) A ..o A (VT pu[T)]) -

This form is very similar to that used in first-order theorem provers. These
solvers usually require each o;[Z] to be a clause, which is not required here.
Some of the (VZ. ¢;[Z]) may also be ground, that is, T is empty.
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Note that this conjunctive form is important because it enables many of the
other simplifications described below.

6.2.5 Destructive Equality Resolution (DER)

DER allows the fixing of a solution for a negative equality literal by application
of the following simple transformation:

(V7. x #tV oz, 7)) = (V7. ¢[t,7]) ,

where ¢ does not contain x. For example, using DER, the formula Vz,y. x #
fy) Vv g(z,y) < 0is simplified to Yy. g(f(y),y) < 0. DER is essentially
an equality substitution rule. This becomes clear when the clause on the
left-hand-side is written using an implication, i.e., as

Va,y. (x =t) = [z, 7] .

It is straightforward to implement DER; a naive implementation eliminates a
single variable at a time. However, in benchmarks with hundreds of variables
to be eliminated, this naive implementation may become a bottleneck. The
natural solution is to eliminate as many variables simultaneously as possible.
The only complication in this approach is that some of the variables being
eliminated may depend on each other. A variable x directly depends on vy,
when there is a literal of the form x # t[y].

In general DER is applicable to formulas of the form

VE1, ooy Xy G T1 1V oV Ty V@[T, 20, )

where each x; may depend on variables z;, j # i. Let G be a dependency
graph where the nodes are the variables x;, and G contains an edge from
x; to x; whenever z; depends on x;. Topological sorting on G computes
an ordering of the nodes in which variables occur only after all of their de-
pendencies. In the case where a cycle is detected during sorting, the cor-
responding node z; may simply be removed from GG while at the same time
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x; # t; is moved to ¢[z1,...,x,,y]. Finally, the variable order =y, ...,z
(m < n) computed is used to apply multiple DER operations simultaneously.
Let 0 be a substitution, i.e., a mapping from variables to terms. Initially, 6
is empty. For each variable x,, apply 0 to t;, producing ¢ .» and then up-
date 0 := 0 U {xy, — t},}. After all variables x;, were processed, apply the
resulting substitution 6 to ¢[x1, ..., z,, 7]

As a final remark, the applicability of DER can be increased using theory
solvers. The idea is to rewrite inequalities of the form ¢, [z, 7] # 2]z, 7], con-
taining a universal variable z, into « # t'[y]. This rewriting step is essentially
equivalent to a theory solving step, where ¢1[z, 7] = t2[x,7] is solved for x.
For example, in the case of linear bit-vector equations, this can be achieved
whenever the coefficient of x is odd [44]. This observation follows from a
basic result from number theory that a number a has a multiplicative inverse
mod m iff ged(a, m) = 1. For instance, consider the literal 3z +2y # 0, where
x and y are bit-vectors of size 3. The DER rule does not apply here, since the
literal is not of the form x # ¢. Using a theory solver for the bit-vector theory,
the multiplicative inverse of 3 mod 8(= 23) is found to be 3 as well. Therefore,
3z + 2y # 0 can be rewritten into = # 6y, such that DER applies.

6.2.6 Rewriting

The idea of using rewriting for equational reasoning is not new. It traces
its roots back to the work developed in the context of Knuth-Bendix comple-
tion [66]. The basic idea is to use unit clauses of the form Vz. t[z] = r[Z] as
rewrite rules t[Z] ~ r[z], when t[Z] is “bigger than” r[Z]. Any instance t[s] of
t[z] is then replaced by r[5]. For example, in the formula

(Va. f(x,a) = x) A f(h(b),a) >0,

the left conjunct can be used as the rewrite rule f(x,a) ~ x. Thus, the term
f(h(b),a) > 0 can be simplified to ~(b) > 0, producing the new formula

(V. f(z,a) =2x) A h(b) >0.
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Problems that stem from hardware as well as software verification problems
often contain many equivalences of this kind. Simplification based on rewrit-
ing is therefore a promising pre-processing step which may simplify the input
considerably. The goal is not to use rewriting to solve formulas, but to use
it as an incomplete simplification technique. Therefore, there is no need to
compute critical pairs or to generate a confluent rewrite system. First-order
theorem provers use sophisticated term orderings to orient the equations
t[z] = r[z], i.e., to define what “bigger than” means (see, e.g., [54]). For
the purpose of simplification, any term ordering where interpreted symbols
(e.g., +, %) are considered “small”, allows for simplifications in practice. This
can be realized, for instance, using a Knuth-Bendix ordering where the weight
of interpreted symbols is set to zero. The basic idea behind this heuristic is
to replace uninterpreted symbols with interpreted ones. For example, using
f(z) ~ 2z + 1, the term f(a) — a may be simplified to 2a + 1 — a. Using
bit-vector rewriting rules this may be further reduced to a + 1.

6.2.7 Macros & Quasi-Macros

A macro is a unit clause of the form Vz. f(z) = t[z], where f does not
occur in t. Macros can be eliminated from QBVF formulas by simply replacing
any term of the form f(7) with ¢[7]. Any model for the resultant formula can
be extended to a model that also satisfies Vz. f(Z) = ¢[z]. The following
example illustrates this:

Example 10. Consider the formula
(V. f(x) =z +a) A f(b) >D.

After macro expansion, this formula is reduced to the equisatisfiable formula
b+ a > b. The interpretation a — 1, b — 0 is a model for the simplified
formula that can be extended to

f@y—z+1,a—1,b—0,
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which is a model for the original formula.

A quasi-macro is a unit clause of the form
VZ.f ([T, .. .. tm[T]) = r[T] ,

where f does not occur in r[Z], where f(¢,[Z],...,tn[Z]) contains all T vari-
ables, and the following system of equations can be solved for z1, ..., z,:

y1 = t1[7]

Ym = tm[l'] 9

where y1, ...,y are new variables. A solution for this system is a substitution
0 of the form

T — Sl[y]

T > SulY] -

Let ¢ | 6 denote the application of the substitution 6 to the formula ¢. Then
the quasi-macro can be replaced with the macro

vy (@) = z‘te(/\ yi = t:[7, 7], /(7)) L 0

where ite is an if-then-else term and f is a fresh function symbol. Intuitively,
the new formula expresses that when the arguments of f are of the form ¢;[Z],
then the result should be r[z], otherwise the value is not specified. Thereby,
the quasi-macro was transformed into a macro and normal macro expansion
may be applied.

Example 11. The unit-clause

Ve.f(x+1l,x0—1) =2z
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is a quasi-macro, because the systemy, = x + 1, yo = x — 1 can be solved
for x. A possible solution is the substitution 0 = {x — y; — 1}. Thus, the
quasi-macro may be transformed into the macro

Yy, y2. fyr,y2) =ite(pn =z + 1A Aye = — 1z, f'(y1,y2)) 1 0

The resulting formula after application of the substitution 6 and simplifying is
YY1, ya. f(y1,2) = ite(y2 = y1 — 2, y1 — 1, f'(y1,92)) -

Quasi-macros may not be helpful in all situations, because they require a
system of equations to be solved, and the replacement terms inserted by
macro expansion may not be simpler to solve than the original terms. How-
ever, in preliminary experiments on hardware verification benchmarks it was
found that the system of equations was often trivially satisfied, because all
variables T are actual arguments of f. For instance, assume that variable x;
is the k;-th argument of f. Then, the substitution @ is of the form

{xl > Ykyy o ooy T 7 ykn} .
E.g., in many benchmarks quasi-macros of the form
Yoy, xa. f(z1, 1 + 22, x2) = T][T71, 22

(and larger versions thereof) were found.

6.2.8 Function Argument Discrimination (FAD)

After applying DER, the i-th argument of many function applications is of-
ten a bit-vector value such as: 0, 1, 2, etc. For any function symbol f and
QBYV formula ¢, the following macro can be conjoined with  while preserving
satisfiability:

vx’?' f("l:7y) = Zte(x = U? f?)(?)?f/(xag)) Y
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where f, and f’ are fresh function symbols, and v is a bit-vector value. Now,
suppose that the first argument of all f-applications are bit-vector values.
Macro expansion will reduce f(v',t) to f,(f) when v = v/, and f’(v',t) oth-
erwise. The transformation can be applied again to the f’ applications if their
first argument is again a bit-vector value.

Example 12. Let ¢ be the formula

Va. f(1,2,0) > x A
f(0,a,1) < f(1,0,0) A
£(0,¢,1) =0 A

Applying FAD twice (for the values 0 and 1) on the first argument of f results
in

to

where all function applications have only a single argument.

While not necessarily useful in all applications, this type of simplification has
a major impact on the performance of algorithms that attempt to construct
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(explicitly) models for uninterpreted functions. Since FAD is based on macro
definitions, the infrastructure used for constructing models for macros may be
used to build a model for f based on the intermediate interpretations (e.g.,

f1,0and fo1 in Example[T2).

6.2.9 Other simplifications

As with many other SMT solvers for the bit-vector theory (e.g., [8,(19,20]),
the implementation used to evaluate the algorithms suggested in this chapter
implements several bit-vector specific rewriting and simplification rules such
as: a — a = 0. These rules proved to be very effective in solving quantifier-
free bit-vector formulas and they also apply in the quantified case.

Note that the following section assumes a procedure Simplify that, given
a QBV formula ¢, converts it into negation normal form, applies miniscoping,
skolemization, and the other simplifications described in this section up to
saturation, i.e., until no further simplification is possible.

6.3 Model Checking QBVF

Given a structure (model) M, it is useful to have a model checking procedure
MC that checks whether M satisfies a universally quantified formula ¢ or not.
To this end, a more formal definition of a model for QBVF is required.

Let BV denote the structure that assigns the usual interpretation to the
(interpreted) symbols of the bit-vector theory (e.g., +, *, concat, etc) and
let |BV |,, denote the (partial) interpretation of the sort of bit-vectors of size n.
With a small abuse of notation, the elements of | BV |,, are {0,,, 1,,,...,27 "1},
(Where there is no confusion, the subscript is omitted.) The interpretation of
an arbitrary term ¢ in a structure M is denoted by Mt], and is defined in
the standard way. Let M{z — v} denote a structure where the variable «
is interpreted as the value v, and all other variables, function and predicate



6.3. MODEL CHECKING QBVF 87

symbols have the same interpretation as in M. That is, M{zx — v}(z) = v.
For example, BV{z + 1}[2 * z + 1] = 3. As usual, M{Z — v} denotes
M{zy— vy H{za = va}.. {zn, — v}

For each uninterpreted constant c that is a bit-vector of size n, the inter-
pretation M(c) is an element of |BV|,. For each uninterpreted function

(predicate) f: ny,...,nx — n, of arity k, the interpretation M(f) is a term
t¢lz1,. .., xx], which contains only interpreted symbols and the free variables
x1 : ni,...,TE : ng. The interpretation M (f) can be viewed as a function

definition, where for all 7 in |BV|,,, X ... X |BV|,,,
M(f)(v) = BV{Z — v}[ts[=]] -
Example 13. Let p be the following formula:

V. =(x > 0)V f(z) <x A
Ve, =(x <0)V f(x) >x+1A
fla) >bA
b>a+1.

Then the interpretation
M = {f(z) w ite(x > 0,2 — 1,z +3), a— —1, brs 1}
is @a model for . For instance, M (f(a)) = 2.

Usually, SMT solvers represent the interpretation of uninterpreted function
symbols as finite function graphs (i.e., lookup tables). A function graph is
an explicit representation that shows the value of the function for a finite
(and relatively small) number of points. For example, let the function graph
{0 — 1, 2 — 3, else — 4} be the interpretation of a function symbol g. It
states that the value of the function g at 0 is 1, at 2 it is 3, and for all other val-
ues it is 4. Any function graph can be encoded using ite terms. For example,
the function graph above can be encoded as g(x) — ite(x = 0,1, ite(x =
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2,3,4)). In practice, it is advisable to encode interpretations symbolically to
allow for a (potential) exponentially more succinct representation. For exam-
ple, assuming f is a function from bit-vectors of size 32, the interpretation
f(x) — dte(x > 0,2 — 1,2 + 3) would correspond to a very large function
graph if represented explicitly, i.e., as

f(z) —ite(x =0, -1,
ite(z = 1,0,

)

When models are encoded in this fashion, it is straightforward to check
whether a universally quantified formula Vz. ¢[Z] is satisfied by a structure
M (see also [46]): Let »™ [7] be the formula obtained from ¢[z] by replacing
any term f(7) with M[f(7)], for every uninterpreted function symbol f. A
structure M satisfies Vz. o[z if and only if ~p™ [3] is unsatisfiable, where 5
is a tuple of fresh constant symbols.

Example 14. For instance, in Example[13, the structure M satisfies
V. =(x > 0)V f(z) < x (6.1)

because
s> 0A(ite(s >0,s—1,54+3) < s)

is unsatisfiable. Let M’ be a structure identical to M in Example but
where the interpretation M’ (f) of f is x + 2. The new interpretation M’ does
not satisfy Equation[6.1]in ¢ because

s>0A(s+2<s)

is satisfiable, e.g., by s — 0. The assignment s — 0 is a counter-example for
M’ being a model for .
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The model-checking procedure MC expects two arguments: a universally
quantified formula VZ. ¢[z] and a structure M. It returns T if the struc-
ture satisfies V. ¢[Z], and a non-empty but finite set V' of counter-examples
otherwise. Each counter-example is a tuple of bit-vector values v such that
M{z — v}[elz]] = L.

Using the procedure MC, it is possible to construct a decision procedure for
QBV formulas based on iterative refinement of an initial model (Algorithm [4).
This procedure starts with an initial model, which is either found heuristically
or simply sets all uninterpreted functions to a fixed value. It then checks
whether this model satisfies . If this is not the case, a counter-example V' is
obtained, which contains explicit values for z, i.e., for all universally quantified
variables. These values give a specific function point (or multiple points) at
which the current model M does not satisfy ¢. Instantiating the original for-
mula with these values and solving the resulting formula with an SMT solver
subsequently yields values for all the functions at the function point(s) given
by V. This requires a solver for the theory of uninterpreted functions, which
is a standard component in most SMT solvers and which is usually quite effi-
cient. The function values are then used to obtain a new model M by turning
all function definitions in the previous model into if-then-else terms which re-
turn the newly found value in case the parameters of the function (p) match =
and the previous model if they do not match .

6.4 Template Based Model Finding

In principle, the verification and synthesis problems described in section
can be attacked by any SMT solver that supports universally quantified formu-
las, and that is capable of producing models. Unfortunately, state-of-the-art
SMT solvers do not support complete treatment of universally quantified for-
mulas, even if the variables range over finite domains such as bit-vectors. On
satisfiable instances, they will often not terminate or give up. On some un-
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input : QBVF ¢
output: | or a model M
¢ =8implify(p);/* ¢ is now of the form VZ. ¢[T]) =/

-

2 M :=InitialModel(yp);

3 while True do

4 V :=MC(p, M);

5 if V = T then

6 ‘ return M; /« valid model found. «/
7

8 F = SMT_UF(p{Z — T});

9 if ' = 1 then

10 ‘ return 1L; /x no model exists. */

11 else

| | M={ITEG=7F(fF), M(fE)fF) e M)
13 end

14 end

Algorithm 4: A decision procedure for QBVF based on model refinement.

satisfiable instances, SMT solvers may terminate using techniques based on
heuristic-quantifier instantiation [37].

It is not surprising that standard SMT solvers cannot handle these prob-
lems; the search space is simply too large. Some synthesis tools based on
automated reasoning eliminate this problem (in practice) by constraining the
search space using templates. For example, while searching for a ranking
function, the synthesis tool may limit the search to functions that are linear
combinations of the input before searching for more complex functions. This
simple idea immediately transfers to QBVF solvers. In the context of a QBVF
solver, a template is simply an expression t[z, ¢| containing free variables Z,
interpreted symbols, and fresh constants ¢. Given a tuple of bit-vector values
T, we say t[T,7] is an instance of the template t[z, ¢]. A template can also be
viewed as a parametric function definition. For example, the template ax + b,
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where a and b are fresh constants, may be used to guide the search for an in-
terpretation for unary function symbols. The expressions t+1 (a +— 1,b — 1)
and 2z (a — 2,b — 0) are instances of this template.

A template binding for a formula ¢ is a mapping from uninterpreted function
(predicate) symbols f;, occurring in ¢, to templates ¢;[Z,¢]. Conceptually,
one template per uninterpreted symbol is enough. If two different templates
t1[Z, 1] and t2[T,¢z) should be considered for an uninterpreted symbol f,
they may simply be combined in a single new template ¢'[Z, (¢1,¢z,¢)] =
ite(c = 1,t1[T, c1], t2[T, ¢2]), where c is a fresh constant. This approach can
be extended to the construction of templates that are combinations of smaller
“instructions” which can be combined to construct a template for any desired
class of functions.

Without loss of generality, assume that ¢ contains only one uninterpreted
function symbol f. A template-based model finder or TMF is a procedure that,
given a ground formula ¢ and a template binding TB = { f — t[Z, ]}, returns
a structure M for ¢ s.t. the interpretation of f is t[Z,v] for some bit-vector
tuple @, if such a structure exists. TMF returns L otherwise. Assuming that ¢
is a ground formula enables the use of a standard SMT solver to implement
TMF. It is simply the formula

@A /\ f(?) :t[ﬁé]

f(Pep

that needs to be checked for satisfiability. If this is the case, the model pro-
duced by the SMT solver will assign values to the fresh constants ¢ in the
template [z, ¢]. Note that, when TMF(y, TB) succeeds, ¢ is called satisfiable
modulo TB.



92 CHAPTER 6. SOLVING QUANTIFIED BIT-VECTOR FORMULAS

Example 15. Let ¢ be the formula

CL1:O/\
(12*1/\
az =

and let the template binding TB be { f — c1x + c2}. Then, the corresponding
satisfiability query is
fla1) > 10 A
f(az) > 100 A
f(as) > 1000 A
a1 =0ANas=1A
ag =2 A
f
f

flas) = craz +ca .

(al) = C10a1 + (6] A
(

CLQ) =ciag +ca N\

The formula above is satisfiable, e.g., by the assignment c; — 1 and cy —
1000. Therefore, ¢ is satisfiable modulo TB.

6.5 A decision procedure for QBVF

The techniques described in the previous sections can be combined to pro-
duce a simple and effective solver for non-trivial benchmarks, as presented
in Algorithm 5| The solver implements a form of counter-example guided re-
finement where a failed Model Checking step suggests new instances for the
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universally quantified formula. This method is also a variation of model-based
quantifier instantiation [46] based on templates. The procedure SMT is an
SMT solver for the quantifier-free bit-vector and uninterpreted function theory
(QF_UFBV in SMT-LIB [7]). The procedure HeuristicInstantiation cre-
ates an initial set of ground instances of ( using heuristic instantiation. Note
that the formula p is monotonically increasing in size, so the procedures SMT
and TMF can exploit incremental solving features available in state-of-the-art
SMT solvers.

input : ¢, TB
output: | or a model M
1 ¢ =8implify(y);/* ¢ is now of the form VZ. ¢[T]) =/
2 p:=HeuristicInstantiation(yp);
3 while True do
4 if SMT(p) = unsat then
5 ‘ return L ;
6 M :=TMF(p, TB);
7 if M = 1 then
8 ‘ return 1; /« unsat modulo TB =*/
9

V i=MC(p, M);
10 if V = T then
1 ‘ return M; /+ valid model found. «/
12 p=pANgey 0] ; /* update p. */
13 end

Algorithm 5: A template-based QBVF decision procedure.

Theorem 8. Algorithm[5is complete modulo the given template TB.

Proof. The formula p increases monotonically. The conjunct added in every
iteration is an instance of ¢ with all universals replaced by values from the
counter-example V, thereby adding new quantifier instances to p in every
iteration. Since the number of possible instantiations is finite, the process
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must terminate eventually. In the case where it terminates at line 8 (with
unsat modulo TB), there is no instance of the template TB that satisfies p.
Since p is a conjunction of instances of ¢, there is no model for ¢ modulo
TB. O

Algorithm [5]is complete for QBVF (in general) if TMF never fails, that is, M
is never 1. This can be accomplished using a template that simply covers
all possible functions: Assume w.l.0.g that every function in ¢ has only one
argument and it is a bit-vector of size 2. Then, using the template

ite(x = ¢1,a1,...,ite(x = con_1,a9n_1,a9n)...)

guarantees that TMF will never fail, where ¢y, ...can_1, a1, ..., asn are the
template parameters. Of course, it is impractical to use this template in prac-
tice. For example, the implementation used to evaluate Algorithm [5| (see
Chapter [7) contains an outer-loop that increases the size of the templates
whenever the Algorithm 5 returns unsat modulo TB.

In many cases, using actual tuples of bit-vector values is not the best strat-
egy for instantiating quantifiers as shown by the following example:

Example 16. Let f be a function from bit-vectors of size 32 to bit-vectors of
the same size in
(Vz. f(z) > 0), f(a)<O0.

To prove this formula unsatisfiable, the quantifier should be instantiated with
a instead of the 232 possible bit-vector values. This problem may be ap-
proached as it is in [46]: Given a tuple (v, ...,vy,) inV, if there is a term
tinp st. M[t] = v;, uset instead of v; to instantiate the quantifier. Of
course, in practice, there may be several different t’s to chose from. In this
case, the syntactically smallest instance is selected, and ties are broken non-
deterministically.

Additional Techniques. Templates may be used to eliminate uninterpreted
function (predicate) symbols from QBV formulas. The idea is to replace any
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function application f;(7) (ground or not) in a QBVF ¢ with the template defi-
nition ¢;[7, ¢]. The resultant formula ¢’ contains only uninterpreted constants
and interpreted bit-vector operators. Therefore, ' may be flattened into QBF.

Example 17. Expanding the template cix + ¢y for f in the formula ¢ from
Example[13, produces

V. =(x > 0)Verx+ce <z A
Ve, o(z <0)Veaxr+ec>r+1A
cia+cog >bA
b>a+1,

which readily translates to an equi-satisfiable QBF.

This observation also suggests that template model finding is essentially ap-
proximating a NEXPTIME-complete problem (QBVF) as a PSPACE-complete
one (QBF). Of course, the reduction is effective if and only if the size of the
templates is polynomially bounded by the size of the input formula.

If the QBV formula is a conjunction of many universally quantified formulas,
a more attractive approach is quantifier elimination using BDDs [9] or resolu-
tion and expansion [14]. Each universally quantified clause can be processed
independently and the resultant formulas are combined. Another possibility is
to apply this approach only to a selected subset of the universally quantified
sub-formulas, and rely on Algorithm [5|for the remaining cases.

Finally, first-order resolution and subsumption can also be used to derive
new implied QBV universally quantified clauses and to delete those which
are redundant.

6.6 Discussion & Related Work

In practice, uninterpreted functions are often not required. In this case, QB-
VFs can be flattened into either a propositional formula or a quantified Boolean
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formula (QBF). This is possible because bit-vector variables may be treated
as a vector of Boolean variables. Operations on bit-vectors may be flattened
to a bitwise construction of the operator. For example, bit-vector addition may
be represented by a Ripple-Carry-Adder circuit on Boolean variables. This
procedure is commonly referred to as bit-blasting and increases the size of
the formula considerably (e.g., quadratically for multiplication operators), and
structural information is lost.

For quantified formulas, universal quantifiers can be eliminated by expan-
sion since each quantifies over a finite domain of values. This usually results
in an exponential increase of the formula size and is therefore infeasible in
practice. An alternative method is to flatten the QBV formula without expand-
ing the quantifiers. This results in a QBF and off-the-shelf decision proce-
dures (QBF solvers) like sKizzo [12], Quantor [14] or QUBE [50] may be em-
ployed to decide the formula. In practice, however, the performance of QBF
solvers has proven to be problematic.

One of the potential issues resulting in poor performance may be the prenex
clausal form of QBFs. It has thus been proposed to use non-prenex non-
clausal form [2,|41}/51]. This has been demonstrated to be beneficial on cer-
tain types of formulas, but all known decision procedures fail to exploit any
form of word-level (bit-vector) information.

A further problem with QBF solvers is that only few of them support certifi-
cation, especially the construction of models for satisfiable instances. This is
an absolute necessity for solvers employed in a synthesis context, i.e., when
a concrete model is required. However, there is no standard format for QBF
models and the definition of such has proven to be much less straight-forward
than for SAT. (See Chapter[5|and [111/62].)

SMT QF_BYV solvers. For some time now, SMT solvers for the quantifier-
free fragment of bit-vector logic (QF_BV) existed. Usually, those solvers are
based on a small set of word-level simplifications and subsequent flattening
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(bit-blasting) to propositional formulas. Some solvers (e.g., SWORD [100]),
try to incorporate word-level information while solving the flattened formula.
Some tools also have limited support for quantifiers (e.g. BAT [72]), but this is
usually restricted to either a single quantifier or a single alternation of quan-
tifiers which may be expanded at feasible cost. Most SMT QF_BV solvers
support heuristic instantiation of quantifiers based on E-matching [37]. On
some unsatisfiable instances, this may terminate with a conclusive result, but
it is of course not a solution to the general problem. The method proposed
here, uses SMT solvers for the quantifier-free fragment to decide intermedi-
ate formulas, and therefore represents an extension of SMT techniques to the
more general QBV logic.

Synthesis tools. Finally, there is recent and active interest in using modern
SMT solvers in the context of synthesis of inductive loop invariants [91] and
program fragments [59], such as sorting, matrix multiplication, de-compression,
graph, and bit-manipulating algorithms. These applications share a common
trait in the way they use their underlying symbolic solver. They search a tem-
plate vocabulary of instructions, that are composed as a model in a satisfying
assignment. This is the main inspiration for the template based model finding
approach described in Section (6.4
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Chapter 7

Experimental Evaluation

This chapter presents an experimental evaluation of each method presented
in this dissertation. When combined, these methods result in a highly efficient
termination proving algorithm (Compositional Termination Analysis, Chap-
ter [3). The methods presented in Chapters and [6 represent solutions
to sub-problems of termination analysis and are therefore evaluated against
other methods from the respective areas. The performance of each of the
algorithms described in this dissertation is, in practice, highly dependent on
their implementation. Each of the following sections therefore describes cru-
cial implementation details before presenting the corresponding experiments
and their interpretation. Where not otherwise stated, all experiments were
executed on Intel Xeon 3 GHz machines with 16 GB of RAM.

7.1 Compositional Termination Analysis

Compositional Termination Analysis (CTA), i.e., Algorithm [2| on page is
implemented for analysis of ANSI-C programs. The implementation is based

99
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on the CBMC framework [26].

It instruments the program for Binary Reachability Analysis, i.e., with termi-
nation assertions as described by Cook et al. [35] and subsequently applies
the termination analysis once to each loop in the program. There are two ad-
ditional features that need discussion, namely an abstracting loop slicer, and
the blockwise ranking procedure.

7.1.1 Slicing and Loop Abstraction

To reduce the resource requirements of the Model Checker, the implementa-
tion of CTA analyzes each loop separately. It generates an inter-procedural
slice [56] of the program, slicing backwards from the termination assertion.
Additionally, the program is rewritten into a single-loop program, abstracting
from the behavior of all other loops.

Following the hypothesis that loop termination rarely depends on complex
variables that may be calculated by other loops, the slicing algorithm replaces
all assignments that depend on five or more variables with non-deterministic
values. Also, all loops other than the one currently being analyzed, are ‘hav-
ocked’: they are replaced by program fragments that assign non-deterministic
values to all variables that might change during the execution of the loop.

Note that this addresses a purely practical issue: The benchmarks used in
the evaluation take too long to analyze without this abstraction. However, the
abstraction is almost always precise enough, i.e., only very few termination
proofs are lost. Of course, exactly the same abstracted slices are used for all
methods in the evaluation.

7.1.2 Blockwise Ranking

CTA requires a ranking procedure (called rank in Chapter[3). This procedure
may be implementing in various ways. For example, it is possible to enumer-
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ate all paths through U;zo R7 and to obtain a d.wf. ranking relation for every
path separately. To avoid this enumeration, the symbolic execution engine of
CBMC [26] is employed to find paths through the program that are not yet in-
cluded in the candidate transition invariant. To this end, a temporary program
is created that first initializes all variables with non-deterministic values, saves
the state, and then executes the current unwinding R?, which is loop-free. Fi-
nally, the inclusion of all loop pre- and post-states in the current candidate
transition invariant (starting with the empty set) is checked.

If a counterexample is found, a path through the program is extracted from
it and rank is used to compute a well-founded ranking relation for it. If this
succeeds, this relation is added disjunctively to the current (d.wf.) candidate
transition invariant. This procedure is essentially equivalent to the application
of the Terminator Algorithm to a loop-free program fragment.

The explicit check for compositionality of the candidate transition invariant
can often be avoided. For example, if we find that T" is composed of a single
wf. ranking relation, the transition relation must trivially be well-founded as
well, since it is a subset of a wf. transition invariant.

The following example demonstrates the behavior of the implementation of
CTA on a small program:

Example 18. Consider the ANSI-C program in Figure[7.1} It contains a single
loop with two potential paths through its body. Figure[7.2 presents the control
flow graph of this program and defines the program locations l; to ly.

CTA starts ati = 1 and R!, which is equivalent to a single unwinding of the
loop, i.e., a single copy of the loop body. The initial value of the entry-state
abstraction X is the complete state-space S, which includes states that have
the variable debug set to values other than 0. The initial termination argument
T is empty (0).

The blockwise ranking procedure analyzes R' and, since T is empty, any
path through the locations I, and lg violates the current termination argu-
ment. Consider the path passing through locations Iz, l3,14,15,1s, 2. There is
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void main ()
{
int i;
int debug = 0;

while (i>0)

Figure 7.1: A program with two paths through its loop.

no well-founded ranking relation for this path because the segment between
locations 5 and I fixes x t0 0, i.e., x is always set to the same value, which
also happens to satisfy the loop entry condition. Furthermore, the variable
debug never changes its value. It is therefore possible that the post-state
after execution of this path is equal to the entry-state.

The ranking procedure thus returns a non-empty path precondition C =
(x > 0) A (debug # 0). However, C does not contain any reachable loop
entry state in the original program because debug is set to 0 between l; and
lo. Consequently, the test at line 7 of Algorithm 3 fails and the entry-state
abstraction X is updated to X \ C at line 12 of A/gorithm[g

The algorithm continues with the updated X, while T is still empty. There ex-
ist another path through the block R': 1, 13,14, ¢, 2. Blockwise ranking finds
a ranking function for this path, namely —x, and constructs the d.wf. ranking
relation Ty = —x < —x', which is (disjunctively) well-founded.

Finally, the current termination argument, T, is unified with T' and i is in-
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debug = 0

debug;é()m z:=0
Us)

OO

Figure 7.2: Control-flow graph of the program in Figure [7.1]

creased. Since the d.wf. ranking relation found in the previous iteration was
disjunctive, compositionality of T' needs to be established, which in this case
is trivial. The program in Fig.[7_1| therefore terminates according to Lemmalg

7.1.3 Experimental Results

The implementation of Compositional Termination Analysis is evaluated on
a set of 87 Windows device drivers taken from the Windows Device Driver
Kit (WDK)F_']The WDK already includes verification harnesses for the drivers
(for verification with SDV/SLAM [5]). Every driver is analyzed in two different
configurations, which results in a total of 174 benchmarks, in total containing
1665 loops. The model extractor GOTO-CC (see Appendix [C) is used to ex-
tract control flow graphs from the original source files, which are then passed
to the Compositional Termination Analysis engine.

CTA is compared to an implementation of the Terminator Algorithm which
uses the SATABS [27] predicate abstraction engine as the safety checker.
Both, the Terminator Algorithm and CTA use the simple (and incomplete)
SAT-based polynomial coefficient enumeration approach for ranking relation
synthesis (this method is described in Section and evaluated in the fol-

"Version 6, available online athttp: //www.microsoft .com/whdc/devtools/wdk/
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lowing section). All experiments are run using a timeout of one hour and a
memory limit of 2 GB.

Whenever CTA is not able to find a valid d.wf. transition invariant for a loop, it
returns the weakest precondition of a path through the program. This precon-
dition describes a set of states from which termination of the program is not
guaranteed. The implementation can be configured to react to this situation
in three different ways:

a) check reachability of the precondition,
b) check reachability of the loop, or

c) report the loop as non-terminating.

Results are presented for all three variants.

First, the results obtained from variant a) are discussed. This variant checks
path preconditions using a Model Checker (here this is SATABS). This variant
is a full implementation of the CTA algorithm.

Every data point in Figure represents one loop. On the horizontal axis
the total time taken to analyze the loop using the Terminator Algorithm is
indicated. The vertical axis indicates the time taken by Compositional Ter-
mination Analysis. It is apparent from Figure [7.3] Compositional Termination
Analysis is up to three orders of magnitude faster. However, there are a few
non-terminating benchmarks on which it is slower or runs out of memory. Due
to this behavior, CTA loses precision compared to Terminator on 60 bench-
marks, i.e., it reports a loop as non-terminating where Terminator proves ter-
mination This is due to the fact that on non-terminating loops many (or all)
path preconditions are eventually enumerated. The resulting loop-free pro-
grams are sometimes too difficult for the model checker. A possible solution
for this problem is techniques that compute a more general precondition of

2The implementation reports a loop as non-terminating when it runs out of resources.
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Figure 7.3: Experimental results using path precondition checks (CTA a).

non-termination. A recent technique described by Cook et al. [32], which
constructs preconditions of termination, may be adapted for this purpose.

Figure provides the results obtained when checking for general loop
reachability, which is essentially a crude over-approximation of the precondi-
tion of the non-terminating paths through the loop. The results are very similar
to those of the previous variant, which is due to the fact that most loops are
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Figure 7.4: Experimental results using loop reachability checks (CTA b).

indeed reachable and so are most path preconditions. The difference in preci-
sion compared to Terminator is very small for this variant: only 18 termination
proofs are lost due to the over-approximation. In terms of performance how-
ever, variant b) is far superior to Terminator. The data points in Figure [7.4]are
almost all below the diagonal and many of them are in the area of two to three
orders of magnitude of improvement.
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Figure 7.5: Experimental results without loop reachability or precondition
checks (CTA c).

Finally, CTA variant ¢) reports non-termination immediately, i.e., without
checking reachability of the loop or a precondition. The results obtained us-
ing this very crude approximation are presented in Figure[7.5] Naturally, this
version of CTA is the fastest, but it also introduces unwanted imprecision.
However, in practice it is still rare for this imprecision to manifest itself: only
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Figure 7.6: Total number of loops analyzed within the resource limits.

89 termination proofs are lost, compared to the Terminator Algorithm.

For a comparison of the total number of termination proofs obtained through
each algorithm, see Figure[7.6] The overall capacity of Compositional Termi-
nation Analysis is clearly much higher than that of the Terminator Algorithm:
Compositional Termination Analysis is able to analyze more than twice the
number of benchmarks that Terminator is able to analyze. The data in Fig-
ure[7.6]also indicates that CTA variant b) may be a good solution in practice,
since it is most successful when bounded by resource limits.

The raw experimental data obtained for this evaluation is too voluminous
to be included in this dissertation. It is however, available on the web, at
http://www.cprover.org/termination/, along with the implemen-
tation, and additional material.
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7.2 Ranking Relation Synthesis

Chapter [4] presents two new methods for ranking relation synthesis for bit-
vector programs. Those methods are compared to existing methods in this
section.

The most important comparison is that to the linear ranking function synthe-
sis engine RANKFINDER, which uses rational arithmetic but is otherwise very
similar to the method based on integer linear programming (Section 4.2).

Finite-state programs using only machine integers can also be proved ter-
minating without ranking functions. Therefore, the performance of the new
methods is also compared with one approach not based on ranking func-
tions: the rewriting of termination properties to safety properties according
to Biere et al. [15]. Note that because the vast majority of systems-level
code makes extensive use of both bit-level operations on machine integers
and unbounded data-structures such as linked lists however, ranking function
synthesis for machine integers remains advantageous.

7.2.1 Large-scale benchmarks

The termination prover used for this evaluation is the implementation of the
Terminator algorithm as discussed in the previous section. The benchmarks
are device drivers from the Windows Driver Development Kit (WDK), again
as discussed in the previous section. The model extractor GOTO-CC (see
Appendix [C) is used to extract model files from a total of 87 drivers in the
WDK.

Most of the drivers contain loops over singly and doubly-linked lists, which
require an arithmetic abstraction. This abstraction can be automated by
existing shape analysis methods (e.g., that recently presented by Yang et
al. [102]). Note that the implementation used in this evaluation does not in-
clude any abstraction for this purpose.
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2| 8 (34| 1 6 |10 | 13 | 14 | 13 || total @
2 4 0 1 3 (10| 7 7 13 || terminating 8
0 4 11 0] 3|05 7 0 || non-terminating -
2 0 7 1 1 0| 2 2 6 || # Rank Functions
11340 | — |61 |10 | 37 | — | 218 | — || Time [min]

Table 7.1: A small selection of the results on full driver code.

Just like Cook et al. [36], we find that most of the runtime of the Termi-
nator algorithm is spent in the reachability checker (more than 99%), espe-
cially after all required ranking functions have been synthesised and no more
counterexamples exist. To reduce the resource requirements of the Model
Checker, the implementation used here analyzes each loop separately and
generates an inter-procedural slice [56] of the program, slicing backwards
from the termination assertion. In addition, the program is rewritten into a
single-loop program, abstracting from the behavior of all other loops (see also
Section[7.1.1). With this (abstracting) slicer in place, the absolute runtime and
memory requirements are reduced dramatically.

A small subset of the results is presented in Table Note that, if rank-
ing functions are successfully synthesized, but the final safety property can
not be proven within the time limit, the loop is classified as non-terminating.
The entry ‘— indicates that the tool ran out of time (after 6 hrs) or memory
(2GB). Consequently the numbers of terminating and non-terminating loops
do not necessarily add up to the total number of loops. The complete data on
all drivers is voluminous; for the purpose of this discussion it is sufficient to
present a typical example in detail. The full dataset is available onIineE]

3http://www.cprover.org/termination/
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[1]2][3]4][5][6]7][8]9]10]11] 12 [13]Loop \
list |list{unr.| i++ |unr.{unr.|unr.junr.|wait|unr.|unr.| i++ | list || Type

12685 (687|248|340(298|253|844|109|375|333|3331|146||CE Time [sec]
05|01 — 07| - | —| = | —-104] — | — | 2.2 |0.4||Synth. Time [sec]
X | X |V MOV |V |V |V ]| X |V |V |MO| x |Terminates?

Table 7.2: The behaviour on the loops of a keyboard driver.

The keyboard class driver in the WDK (KBDCLASS) contains a total of 13
loops in a harness (SDV_FLAT_ HARNESS) that calls all dispatch functions
nondeterministically. Table|/.2) describes the behaviour of the Terminator al-
gorithm on this driver. For every loop this table lists the type of the loop (list
iteration, integer increment (i++), unreachable, or ‘wait for device’), the time it
takes to find a potentially non-terminating path (‘CE Time’), the time required
to find a ranking function using the incomplete SAT template (Equation(4.11[in
Section [4.3) (‘Synth. Time’, where applicable), and the final outcome. In the
last row, ‘MO’ indicates a memory-out after consuming 2 GB of RAM whilst
proving that no further counterexamples to termination exist. The entire anal-
ysis of this driver requires 2 hours.

In the course of this evaluation, a possible termination problem in the USB
driver bulkusb was identified, which may result in the system being blocked.
In module bulkpnp of the WDK sample USB driver (bulkusb) the driver re-
quests that an interface description structure is searched within a Configura-
tionDescriptor for every device available. It increments the loop counter if this
did not return an error. The function USBD_ParseConfigurationDescriptorEx,
however, is an API function for which no implementation is available. Accord-
ing to the APl documentation, it may return NULL if no interface matches the
search criteria ( ilndex, 0, —1, —1, —1 in Fig. , resulting in iNumber not
being incremented. Since numberOfinterfaces is a local (non-shared) vari-
able the loop, the problem would persist in a concurrent setting, where the
device may be disconnected while the loop is executed.
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while (iNumber < numberOfinterfaces) {
iDesc = USBD_ParseConfigurationDescriptorEx (
ConfigurationDescriptor,
ConfigurationDescriptor,
ilndex ,
0, —1, =1, —1);
if (iDesc) {
/% ... %/
iNumber ++;

}

ilndex ++;

Figure 7.7: Code fragment from usb/bulkusb/sys/bulkpnp.c (simpli-
fied)

7.2.2 Experiments on smaller examples

The dominance of the reachability engine in the large-scale experiments pre-
vents a meaningful comparison of the utility of the various techniques for
ranking function synthesis. For this reason, further experiments on smaller
programs were conducted, where the behavior of the reachability engine has
less impact. For this purpose, 61 small benchmark programs were extracted
manually from the WDK drivers. Most of them contain bit-vector operations,
including multiplication, and some of them contain nested loops. All bench-
marks were manually sliced by removing all source code that does not affect
program termination (much like an automated slicer, but more thoroughly).
The same abstraction technique as described in Section|/.1.1|was used. Out
of these 61 benchmarks, 10 are non-terminating. The time limit in these
benchmarks was 1 hour, and the memory consumption was limited to 2 GB.

To evaluate the integer linear programming method described in Sect.
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# 112|3|4|5|6|7|8|9|10|11[12|13|14|15[16|17(18|19(20|21|22|23|24(25/26|27|28(29|30(3 1
Manual Insp.  [|L|{L|L{LININ|N|L|T|{N|T|L{L{N|T|L|L|L|L|L|T|L|L|L{L|L{L{N|T|L|T
SAT 00000006000 eeo0CeeeeeCeeeee0C000O0
Seneschal 000000 -0000ee0OCeeeeeC-0e0ee000-0
Rankfinder 0@0/e0|0|0|e0/00|eo|00e e el eeeeoro-00
QBF [-1,+1] - |- @@ OO |- |0 - @ |- |- |- |-|-|-|- |- |- |®-|-|-|-|O]- @O
QBF P(c,z) ||-|-|®|®|=|-|=|-|=|-|-|®=|=|-|=|-|-|-|-|-|-|®-|-|-|-|-|-|-]|-
Biereetal. |15||| - |- |- |@|-|-|-|-|-|O|-|®|®|-|-|-|-|-|-|®|-|-|® - |-|-|-|O|- |- |®
# 32|33[34(35|36|37|38(39(40(41|42|43|44|45|46|47|48|49(50(51|52|53|54|55(56|57|58/59|60|61
Manual Insp. || T|L|L{N|L|T|L|L|L{L|L{L{N|T|L|L|T|T|T|L|{T|T|NJL|L|L|L|L|IN|T
SAT Oleo0eOeeeeeeO0Oee000e000eeeeeO0O0
Seneschal OleO0eCeeeeeeO0Cee000eo00leeee-0O-
Rankfinder Ol@eO0e0eeC0ee00ee000e-0-e0ee000
QBF [-1,+1] Ol=-|-|-|-|-|-|-|®|-|-|®|O]|-|-|®-|O|O|@|O|-|-|—-|-|-|-|-|O]|-
QBF P(c,z) ||=|—=|-|=|-|-|-|=|=|=|=|-|O|=|-|-|-|-|-|®|-|=-|-|-|-|-|-|-|-|—
Biere etal. [15)||— |- |- |- |@|—|—|— |@|—|—|—|— o0 - -0 - —-|-|-|-|-|-|-|0|®

@® - Termination was proven T - Terminating (non-linear)

O — (Possibly) Non-terminating L — Terminating, and linear

© - |Incorrect under bit-vector semantics ranking functions exist.

— — Memory or time limits exhausted N - Non-terminating

Table 7.3: Experimental results on 61 benchmarks drawn from Windows de-
vice drivers.

a prototype called Seneschaﬂ was developed. It is based on the theorem
prover Princess [86] for Presburger arithmetic (PA) with uninterpreted predi-
cates and works by (i) translating a given bit-vector program into a PA formula,
(i) eliminating the quantifiers in the formula, (iii) flattening the formula to a dis-
junction of systems of inequalities, and (iv) applying Lem. [9|to compute rank-
ing functions. Seneschal does not currently transform systems of inequalities
to integral systems, which means that it is a sound but incomplete tool; the
experiments show that transformation to integral systems is unnecessary for
the majority of the programs considered.

For the experiments using Rankfindel{ﬂ the bit-vector operators +, x with
literals, =, <5 and <, are approximated by the corresponding operations

4http://www.philipp.ruemmer.org/seneschal.shtml
Shttp://www.mpi-inf.mpg.de/~rybal/rankfinder/
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on the rationals, whereas nonexistence of ranking functions is reported for
programs that use any other operations. Furthermore, constraints of the form
0 < v < 2™, where n is the bit-width of v, are added to restrict the range of
pre-state variables.

The other methods are implemented using the CBMC framework [26] to
flatten bit-vector formulas into SAT or QBF formulas (without loss of preci-
sion).

Table summarizes the results. The first column indicates the results
obtained by manual inspection, i.e., whether a specific benchmark is termi-
nating, and if so whether there is a linear ranking function to prove this. The
other columns represent the following ranking synthesis approaches: SAT is
the coefficient enumeration approach from Section[4.3; Seneschal is the inte-
ger linear programming approach from Section[4.2.1} Rankfinder is the linear
programming approach over rationals described in Section[2.2.3} QBF [-1,+1]
is a QBF template approach from Section with coefficients restricted to
[—1,+1], such that the template represents the same ranking functions as
the one used for the SAT enumeration approach. QBF P(c,x) is the unre-
stricted version of this template. Note that two benchmarks (#27 and #34)
are negatively affected by the abstracting slicer: due to the abstraction, no
linear ranking functions are found. On the original programs, the SAT-based
approach and Seneschal find suitable ranking functions. On benchmark #34
however, the Model Checker times out afterwards.

Comparing the various techniques, it is clear that the simple SAT-based co-
efficient enumeration is most successful in synthesizing useful ranking func-
tions. It is able to prove 34 out of 51 terminating benchmarks and reports 27
as non-terminating. It does not time out on any instance (with slicing; on one
instance without slicing).

Seneschal shows the second best performance: it proves 31 programs as
terminating, almost as many as the SAT-based template approach. It reports
25 benchmarks as non-terminating and times out on 5.
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The interpretation of bit-vectors as rationals using the RANKFINDER engine
results in 23 successful termination proofs, and 35 cases of alleged non-
termination. In three cases, the reachability checker times out on proving
the final property, and in 5 cases RANKFINDER returns an unsuitable ranking
function.

The runtimes of the SAT coefficient enumeration, Seneschal, and Rank-
finder are relatively short (seconds). Tables[7.4]and list the runtime and
the final result for all approaches and all benchmarks.

For the two QBF techniques, an experimental version of QUBE was used
as the QBF solver. This solver performed better than sKizzo, Quantor, and
Squolem in a preliminary evaluation. The constrained template (Q BF[—1, +1])
is still able to synthesize some useful ranking functions within the time limit.
It proves 9 benchmarks terminating and reports 11 as non-terminating. The
unconstrained approach (QBF P(c, x)), however, proves only 5 programs ter-
minating and one non-terminating, with the QBF-Solver timing out on all other
benchmarks.

Since all programs in the benchmark set are finite-state programs, it is nec-
essary to compare to existing methods which do not require ranking func-
tions. Here, they are compared to an approach suggested by Biere et al. [15]
(bottom row of Table[7.3). This approach does not require ranking functions,
but instead proves that an entry state of the loop is never revisited. Gener-
ally, these assertions are difficult for the reachability checker (here SATABS).
While this method is able to show only 14 programs terminating, there are
4 benchmarks (#31, #45, #50, and #61) that none of the other methods can
handle as they require non-linear ranking functions.
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#Manuall SAT [SeneschallRankfinder[QBF [-1,+1]JQBF P(C, X)[Biere et al. [15])|
1 L |[52.07/@|17.67| @ |0.05| O T/O |-| T/O - T/O - |
2] L [1.16|@}22.02] @ [1.19] @ TO |[-] TIO | - T/O -
3] L |0.30|@10.97| @ [0.03) O | 49.45 |@|567.79| @ |3595.58 -
4 L [(029|@/760 @ 037 @ | 16.28 | @|220.65 @ | 1095 | @
5/ N ]0.18|0[15.15] O [0.04| O 0.78 |O]| T/O - T/O -
6/ N |0.18|0[20.33) O [0.03] O 1.57 |O| T/O - T/O -
71 N [17.93/0| T/O| — [0.03] O TO |-| TIO | - T/O -
8 L |040|@/8.36| @ [0.36] @ TO [-] TIO | - T/O -
9 T |0.12|0[8.05| O |0.08] O TO |-| TIO | - T/0 -
100 N ]0.25|0|9.62| O 0.02] O 0.78 |O]| T/O - 0.04 O
M T 0.28|0O(11.54| O [0.04| O T/O |-| T/O - T/O -
12/ L |0.25|@757| @ (031 @ 245 (@|18.75| @ 5032 | @
13 L |0.28 @/ 8.68| @ (0.04f O T/O |—-| T/O - 8827 | @
14/ N [0.28|0[7.88| O [0.04] O TO [-] TIO | - T/0 -
15| T |0.57|0[14.82] O [0.27| O T/O |—-| T/O - T/O -
16| L [1.65|@[12.12) @ [0.51| @ TO |-| TIO | - T/O -
17] L [1.10|@|16.86]| @ [0.26] O TO [-] TIO | - T/O -
18] L [9.88|@[14.54 @ [0.68 @ TO |-| T/IO | - T/0 -
19 L |038|@747| @ [0.16| @ T/O |—-| T/O - T/O -
200 L |0.31|/@/856| @ [0.01] O T/O |—-| T/O - 1.09 (]
21 T 18.09|0[0.07| O |0.06] O TO |-| T/IO | - T/0 -
22/ L [0.36|@ T/O| — [0.02] O T/O |—-| T/O - T/O

23 L 0.44 |@14.09 @ [0.48) @ | 13.81 |@|570.24] @ 1.09 [ ]
24 L ]0.60|@/8.36| @ [0.69 @ TO |-| T/IO | - T/0 -
25/ L |035|@/764| @ [0.18) @ T/O |—-| T/O - T/O -
26) L [0.383(@/7.70| @ [0.20 @ TO |[-] TIO | - T/O —
27| L [1.65|0[16.36] O [0.20 O TO |-| T/IO | - T/0 -
28 N ]0.08|0|8.95| O [0.03] O 024 [O]| T/O - 9.02 O
29 T 1]0.29|0[8.15] O |T/O] - T/O |—-| T/O - 13539.23

300 L |030|@ T/O| — |0.02f O (1735.81|@| T/O - T/O

31 T ]0.10|0|23.16] O [0.03] O 025 |O]| T/O - 2.46 (]

Table 7.4: Runtime (in seconds) of various ranking synthesis techniques on
61 Windows device driver loops (Part 1).
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#Manuall SAT  [SeneschallRankfinder|QBF [-1,+1]JQBF P(C, X)[Biere et al. [15]]
32 T 1.00 (O 6.04 [00.10] O |0.79| O | T/O - T/O —
33| L 039 @ 752 |@0.16) @ [T/O| — | T/O - T/O -
34| L [1114.95(0[217.93|0[0.05 O |T/O| - T/0 - T/0 -
35 N 0.36 |O| 16.07 [0[0.39] O |T/O| - T/0 - T/O —
36| L 032 |@ 743 @020 @ |T/O| - T/O - 1.83 [ J
37, T 0.80 [O| 14.66 [0|0.54| O |T/O| - | T/O - T/O -
38 L 035 @ 722 (@038 @ | T/O| — T/0 - [3529.21] -
39 L 437 |@| 11.80 (@2.10] @ [T/O| — | T/O - T/O -
40 L 0.14 |@|1071.52/@|0.03] O |1.26| @ | T/O - 18.39 [ J
41 L 044 |@ 11.00 |@/0.03) O |[T/O| - T/0 - T/O —
42| L 0.71 |@| 15.09 |@0.77| @ | T/O| - T/O - T/O -
43 L 259 @ 8.00 @226 @ (29| e@ | T/O - T/0 -
44| N 0.29 |O] 6.76 |0|0.31] O [17.43] O [572.51] O T/O —
45 T 0.28 |O] 9.62 |00.02] O |T/O| - T/O - 0.55 [ J
46| L 028 @ 7.31 @029 e |T/O| - T/O - 0.19 o
47| L 0.14 @ 7.77 |@/0.09 @ [1.37| @ | T/O - 40.43 ®
48/ T 0.24 |O| 8.44 |00.02f O |T/O| - T/0 — [3540.10] -
49 T 0.24 |O| 7.72 |0|0.03] O |0.62| O | T/O - T/0 -
50 T 0.23 |O| 8.18 |0|0.03] O [0.66| O | T/O - [1310.13| @
51 L 046 @ 13.98 (@#0.47] @ [21.03) @ (21850, @ 4.92 ()
52 T 0.24 O 7.44 [O|T/O] - |1.31| O | T/O - T/O -
53 L 0.30 |O] 3.31 |[00.07] O |[T/O| - T/0 — |3549.58] -
54/ N 0.25 0| 7.02 [O|T/O| - |[T/O| - | T/O - T/O -
55/ L 028 @ 7.48 @029 @ |T/O| — | T/O - T/O -
56| L 1.01 (@l 857 |@0.04 O |T/O| - T/0 - T/O —
57| L 0.61 |@ 14.76 |@/0.67| @ [T/O| — | T/O - T/O -
58 L 1461 |@ 24.31 |@/1.56| @ |T/O| - T/O — |3535.98] -
59| L 0.21 |@ T/O |-|0.03] O |T/O| - T/0 - T/O —
60f N 0.24 |O| 7.75 |0|0.03] O [0.74| O | T/O - 0.04 O
61 T 6.68 |[O T/O |-|0.05 O |T/O| — | T/O - 1.88 ]

Table 7.5: Runtime (in seconds) of various ranking synthesis techniques on
61 Windows device driver loops (Part 2).
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7.3 Certificates for QBF

Certificate extraction for QBF as described in Chapter [5|was implemented in
three different solvers:

e SQUOLEM, a new skolemization-based solver,
e EBDDRES, an existing BDD-based solver [63}/90], and

o QUAFFLE, an existing search-based solver [104].

All of the solvers were instrumented with support for certificate extraction
from invalid formulas, i.e., they support Q-resolution proofs. Model extraction
based on Skolem-functions is supported by SQUOLEM and EBDDRES.

SaQuoLEM. The first of the solvers, SQUOLEM, is a new skolemization-based
solver, which generates both models and refutations. SQUOLEM eliminates
quantifiers from a QBF by explicitly generating Skolem-functions for existen-
tial variables in the inner-most scope. For each variable that is about to be
eliminated, it collects all clauses in which the variable occurs and interprets
them as implications, e.g., (a VV b) is interpreted as —a — b. The set of these
implications essentially forms a function definition, by which the variable is
replaced.

In the case of conflicting implications, e.g., —a — b and —a — —b, a clause
stating that the conflict must be avoided, e.g., (a), is added. In terms of the
(Q-)resolution calculus, the conflict clause is simply a resolvent obtained from
the two conflicting implications. The process is iterated until either a complete
model has been constructed, or conflicting unit clauses occur (i.e., an empty
clause is resolved). In the first case, the model is written to the certificate file,
in the second case a Q-resolution tree is constructed from information about
a clause’s parents that is recorded during model construction.
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EBDDRES. EBDDRES is a BDD-based QBF solver that eliminates variables
starting from the innermost scope. In order to eliminate a variable x, EBD-
DRES first builds a conjunction of all the clauses containing = and then quan-
tifies = using one standard BDD OR- resp. AND-operation if the variable is
existential resp. universal. Once all variables are eliminated, a constant BDD
is obtained

EBDDRES produces refutations by introducing a new (Tseitin-) variable for
each BDD node, which is defined to be an if-then-else gate. Given a BDD
node n, let x be its variable and ¢, ty, and ¢, the (Tseitin-) variables introduced
for n, its left child, and its right child, respectively. Then the definition of ¢ is

te (2t : to).

Thus, if z is true (false), the Tseitin variable ¢; (¢y) has to be true. A refutation
is constructed by first showing that the Tseitin variables for the root nodes of
the BDDs for every original clause have to be true. The logical operations of
the solving algorithm are traced until it is shown that the Tseitin variable for
the constant BDD zero has to be true, an clear contradiction. The full details
(with the exception of universal quantification) can be found in [63,/90]. For
universal quantification, the proof rule is as follows: Let x be a universal vari-
able to be eliminated and let ¢ be the variable corresponding to the root node
of the BDD which is the conjunction of all the clauses containing x. Clearly, ¢
must be true for the formula to be valid. The definition of ¢ introduces (among
others) the clause (=t V = V ty). Resolving this with (¢) yields (z V t¢) which,
based on the definition of the Quantified Extension Rule (Definition [27), can
be forall-reduced to (¢o) since ¢, is not in the scope of x. The proof for ¢; is
similar.

Models are produced as follows. In the bucket algorithm (which EBDDRES
implements), when variable z is to be eliminated, a BDD containing precisely
all the constraints on x is built. Traversing the BDD from the root to the child
where z is true (right child) gives another BDD that encodes all the valuations

S8For simplicity, the variable ordering in the BDDs is the reverse of the QBF variable order.
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where x has to be true to satisfy all the constraints. If z is existential, then
this is precisely a Skolem-function for . Thus, the certificate consists of
definitions of the Tseitin variables for this BDD and the Skolem-function is set
to be equivalent to the Tseitin variable of the root (analogously, we could have
chosen the negation of the left child).

QUAFFLE. The search-based solver QUAFFLE is, so far, limited to refutation
traces and does not produce models. Unfortunately, in case of this solver,
(conflict-driven) learning had to be disabled, since it uses long-distance res-
olution [104] and it is currently unclear whether it is possible to trace this
operation in the model format proposed in Chapter 5]

Refutations are constructed as follows: Assume (without loss of generality)
that the innermost scope is existential. If the instance is invalid, both choices
for the truth value of an existential variable lead to a conflict. For a univer-
sal variable, at least one choice leads to a conflict. Whenever a conflict is
reached, a conflict clause can be derived.

Figure 7.8: QUAFFLE search tree.

Refutation proofs are constructed from these conflict clauses. Consider for
instance the simple search tree example presented in Figure [7.8]and let the
solid lines denote paths to conflicts. Let the left (right) arrow from a node
represent setting the truth value of a variable to false (true). Now, the leftmost
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path (—z A—yA—z) leads to a conflict producing the conflict clause (zVyV z).
Similarly, the path (—x A =y A z) produces the clause (z V y V —z). These
clauses are then resolved (and forall-reduced) to first obtain (z V y) and then
(x). Similarly, from the conflict clauses from the right-hand side (where x
is true) the clause (—x) is obtained. Resolving the two, results in an empty
clause. The above representation is simplified. Prior experimental work has
revealed that in most cases rather than a complete conflict clause, one that
subsumes it is obtained. The consequence of this is that it is possible to omit
some resolution steps.

If a formula has a large alternation depth, the proof-generation algorithm
starts by resolving the literals from the innermost existential scope. Subse-
quently, the new clauses are forall-reduced to eliminate the enclosing uni-
versal scope. Then, the proof generation eliminates the second innermost
existential scope and thus alternates between resolution and forall-reduction
until the outermost scope is reached.

QBV. To verify the certificates, a tool called Quantified Boolean Verifier or
QBVwas implemented. The algorithm underlying this tool executes applica-
tions of the extension rule and Q-resolution steps, as listed in the certificate.
The last statement in a certificate is a conclusion line that either provides the
index of an empty clause (for refutations), or a list of equivalences of variables
for a model. As suggested by Benedetti [11], every clause is checked sepa-
rately against the model. For this purpose the SAT-solver MINISAT (Version
1.14p) is used in incremental mode, i.e., the model is loaded into MINISAT
and then the negation of a clause is added as an assumption, which must
result in an unsatisfiable problem. As stated earlier, this problem is in general
Co-NP complete.
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7.3.1 Experimental Results

To show that certificate extraction is feasible, experiments were conducted
on benchmarks from the 2005 QBF-EvaE] dataset (fixed instances) and the
2006 preliminary dataset, which totals to 445 test cases. The three solvers,
EBDDRES, QUAFFLE, and SQUOLEM are used to generate certificates, which
are subsequently verified using QBV.

The tests for EBDDRES and QUAFFLE were run on a cluster of Intel Pen-
tium IV PCs (3.0 GHz) with 2 GB RAM while those for SQUOLEM were run on
an Intel Xeon (3.0 GHz) PC with 4 GB RAM. Each test was run using a time
limit of 600 seconds and a memory limit of 1 GB.

EBDDRES is able to create a model for 80 instances and a refutation trace
for 86 instances. QUAFFLE is able to produce 26 refutations (without learning).

The first interesting performance figure is the time required to solve an
instance (not producing a certificate) in relation to the time that it takes to
generate a certificate. The results for EBDDRES and QUAFFLE are shown in
Figures[7.9(a)] and [7.9(b)} respectively. They show that for both solvers, gen-
erating a certificate takes longer than solving the instance. For EBDDRES the
overhead for models is about 15% and for refutations 440%. This behavior is
(most likely) due to the fact that the Q-resolution proofs for EBDDRES are so
large that merely saving them to a file takes considerable time. Note that a
similar overhead is also observed in the unquantified case [63,90].

For QUAFFLE the overhead is even higher, 1440%. However, this result
is not illustrative since this solver solves only very few instances and these
instances belong to only 6 families. For one instance, ‘k_lin_p-4’, the trace
generation overhead is only 1.6%.

The second performance figure to be evaluated is the time required to val-
idate a certificate in relation to the time that it takes to generate them. The
results for EBDDRES and QUAFFLE are shown in Figures[7.70(a)|and [7.70(b)l

Thttp://wuw.qbflib.org/
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These results show that, for EBDDRES, it takes on average more time to vali-
date than it takes to produce a certificate; again the overhead depends heavily
on whether the instance is valid or invalid. Validating models, takes on aver-
age over 100 times longer than certificate generation. QBV actually times
out on 15 instances (after 600 seconds) where model generation is feasible.
Refutations, on the other hand, are verified quicker, the ratio is 5.4. For QUAF-
FLE, the trace validation times are neglible (on average < 0.04 seconds), as
Figure [7.70(b)| shows. The behavior observed is in line with the fact that ver-
ifying a model is in general Co-NP complete whereas a resolution trace can
be verified in polynomial time.

The same experiments as for the first two solvers were also run using
SQUOLEM: Out of 445 instances in the original dataset, this solver finishes
on 142 benchmarks; 73 instances are found to be valid, 69 invalid and certifi-
cates are produced for each of them.

Again, the time to solve an instance is compared to the time needed to
generate a certificate. Naturally, in a purely Skolemization-based solver, there
is a small difference in those times. Figure[7.11(a)|shows that the overhead of
certificate generation is usually very small (on average 3.5% for models and
4.5% for refutations, with respect to solving time).

As a second experiment, the time taken to validate a certificate is inves-
tigated. Figure shows that the time taken to validate a refutation is
negligibly small (on average < 0.01 seconds); certificates of validity, on the
other hand, take on average 2.38 seconds to validate. The main contribution
to this time is the instance ‘gshifter_7’, which takes 144 seconds to validate.
Excluding this instance, the average validation time is only 0.4 seconds. The
reason for this extraordinary high runtime on just one single instance is that
MINISAT actually runs into a hard problem: 97% of the runtime is spent on
the final model validation.
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Certificate Size

An interesting property of certificates is the size of the files generated. Ta-
ble gives an overview of the relative size of the certificates generated,
with respect to the size of the original formula file. The traces are repre-
sented in the original ASCII format as well as after compression with gzip.
The data indicates that the certificates generated by EBDDRES are very large
compared to those generated by QUAFFLE and SQUOLEM. Furthermore, its
refutations (tracing complex BDD operations) are larger than its models. For
SQUOLEM, on the other hand, the numbers suggest that models are consid-
erably larger than refutations. The certificate format is not optimized for file
size, but as the data indicates, the files compress well with gzip, if smaller
files are required.

Normal Compressed

Solver | Type |Best| Avg. | Worst |Best| Avg. | Worst
EBDDRES| Valid |<0.1] 210.9] 3304.3|<0.1| 52.3] 784.8
Invalid| 1.0|6857.6|145414.0| 1.0{1594.3131948.3
QUAFFLE | Valid || - - - - - -

Invalid|<0.1 3.4 17.0(<0.1 1.3 5.0
SQUOLEM| Valid | 0.7 10.1 175.6| 0.2 2.8 49.6
Invalid||<0.1 3.3 55.0|[<0.1 0.8 104

Table 7.6: Relative size of certificates.

For comparison, SQUOLEM can save model functions in two formats. The
most straight-forward approach to saving model functions is to save them
as a set of CNF or DNF definitions. Figure shows a comparison of
this format and the format based on extension rules. The CNF/DNF format
has a slight advantage in terms of file size. However, it is harder to verify,
because the function definitions have to be translated to CNF in the verifier.
Figure[7.12(b)| shows that the validation time advantage is clearly on the side
of the extension format. The instance ‘gshifter_7’ is missing from this figure,
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because it takes more than 600 seconds to validate in CNF/DNF format.

Finally, it is interesting to compare the solvers that were instrumented for
this evaluation with fast state-of-the-art solvers. Here, QUANTOR and sKizzo
are used to demonstrate the relative performance of the solvers that generate
certificates. As QUAFFLE only produces refutation traces, no data is available
on valid instances for this solver. Therefore, the number of invalid instances
that each solver is able to solve within 600 seconds and a 1 GB memory limit
is presented here for comparison. The numbers in Table [7.7]indicate that the
instrumented solvers together can solve about half as many instances as the
state-of-the-art solvers are able to solve.

[EBDDRES|QUAFFLE|SQUOLEM/QUANTOR|sKIZZO|

Solved Instances 80 | 26 | 69 153 | 175
Solved Inst. (Union) 90 178

Table 7.7: The number of solved instances in the test set.

Alternative Models

An alternative way of giving a model for a (valid) QBF is to provide a refutation
for the negation of the formula (which would then be invalid). Experiments
that negate a formula by translation of the resulting DNF back to a CNF using
the Tseitin-transformation show that this approach is infeasible in practice.
Figure [7.13] shows a comparison of the runtime required to solve a formula
in relation to the time required to solve its negation. All of the problems that
are solved within 600 seconds by two state-of-the-art solvers (QUANTOR and
SKizz0) can either not be solved within the same time limit when inverted, or
take considerably more time to solve.
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7.3.2 Reference Implementations

EBDDRES and the instrumented version of QUAFFLE are available for down-
load athttp://fmv. jku.at/ebddres. SQUOLEM, the certificate valida-
tor QBV and all experimental data are available athttp: //www.cprover.
org/gbv. A formal specification of the certificate format is provided in Ap-

pendix Bl


http://fmv.jku.at/ebddres
http://www.cprover.org/qbv
http://www.cprover.org/qbv

7.4. QUANTIFIED BIT-VECTOR FORMULAS

[sec]

1k Tl A
100 | / -
10 + / :
0Ll 4 xz%: %“ 4
nop L o

001 01 1 10 100 1k [sec]

QuBE
(a) QuBE vs. Z3.

[sec]

1k |- / .
100 - ) R
10 - 8
N / TR
0.01 | amow xl

001 01 1 10 100 1k [sec]

Figure 7.14: Runtime comparison on hardware fixpoint formulas.

sKizzo

(b) sKizzo vs. Z3.

131



132 CHAPTER 7. EXPERIMENTAL EVALUATION

[sec]

1k + 1

100 B

0.1 X 8

X

0.01 |
001 01 1 10 100 1k [sec]

QuBE
(a) QuBE vs. Z3.

[sec]
1k + Tl A
100 - / .
o 1
0.1 / . X 8
0.01 : : : : ‘

001 01 1 10 100 1k [sec]

sKizzo

(b) sKizzo vs. Z3.

Figure 7.15: Runtime comparison on ranking function synthesis formulas.



7.4. QUANTIFIED BIT-VECTOR FORMULAS 133

7.4 Quantified Bit-Vector Formulas

To assess the efficacy of the QBVF solving algorithm described in Chapter|[6}
the algorithm was implemented using the code-base of the Z3 SMT solver [38]
as a basis. This prototype first applies the simplifications described in Sec-
tion It then iterates model checking and model finding as described in
Sections|[6.3]and[6.4} The benchmarks used for the performance comparison
are derived from two sources: a) hardware fixpoint checks and b) software
ranking function synthesis [33]. It is not trivial to compare this QBVF solver
with other systems, since most SMT solvers do not perform well on bench-
marks containing bit-vectors and quantifiers. In the past, QBF solvers have
been used to attack these problems. Therefore, the new prototype is com-
pared to the state-of-the-art QBF solvers sKizzo [12] and QuBE [50] here.

Formulas in the first set exhibit the structure of fixpoint formulas described
in Section The circuits that are used as benchmarks are derived from a
previous evaluation of VCEGAR [58E] and were extracted using a customized
version of the EBMC bounded Model Checkef] which is able to produce
fixpoint checks in QBVF and QBF form. In total, this benchmark set contains
131 files.

The second set of benchmarks cannot be directly encoded in QBF because
they contain uninterpreted function symbols. Therefore, only ranking func-
tions that are linear polynomials are considered, as described in Chapter [4]
After applying the polynomial template, the problems are converted to QBF
as described in Section Thus, the problem here is to synthesise the coef-
ficients of a polynomial. In total, this benchmark set contains 60 files.

All benchmarks were extracted in two forms: in QBVF form (using SMT-
LIB syntax) and in QBF form (using the QDIMACS format) and they were
executed on a Windows HPC cluster of AMD Athlon 2 GHz machines with a
time limit of 1 hour (3600 seconds) and a memory limit of 2 GB.

8These benchmarks are available at http: //www.cprover.org/hardware/
9EBMC is available at http: //www.cprover.org/ebmc/
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As indicated by the scatter plot in Figure [7.14] the new approach outper-
forms the QBF solvers on all hardware fixpoint instances, sometimes by up to
five orders of magnitude and it solves almost all instances in the benchmark
set (110 out of 131). Most of the benchmarks solved in this category (87 out
of 110) are solved by the simplifications and rewriting rules only. In the re-
maining cases, the model refinement algorithm takes less then 10 iterations.

Figure[7.15]shows the results for the ranking function benchmark set. Again,
the new algorithm outperforms the QBF solvers by up to five orders of magni-
tude. The number of iterations required to find a model or prove non-existence
of a model in these benchmarks is again very small: almost all instances re-
quire only one or two iterations and the maximum number of iterations is
9. Even though the new algorithm exhibits similar speedups on both bench-
mark sets, the behaviour on the second set is quite different as none of the
instances in this set is solved by simplification alone. The model finding algo-
rithm is required on each of them.

Tables and provide all the timings (in seconds) and re-
sults of the experiments. Note that they also include the runtime of the QBF
solver Quantor.
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sKizzo | QUBE |Quantor| Z3 |Result
AR-fixpoint-1.qdimacs TIME MEM | MEM | 0.077 |unsat
AR-fixpoint-10.qdimacs MEM MEM | TIME [0.124 |unsat
AR-fixpoint-2.qdimacs TIME MEM | MEM | 0.078 |unsat
AR-fixpoint-3.qdimacs TIME MEM | TIME |0.078 unsat
AR-fixpoint-4.qdimacs MEM MEM | TIME [0.078 |unsat
AR-fixpoint-5.qdimacs MEM MEM | TIME | 0.094 [unsat
AR-fixpoint-6.qdimacs MEM MEM | TIME |0.109 |unsat
AR-fixpoint-7.qdimacs MEM MEM | TIME |0.094 |unsat
AR-fixpoint-8.qdimacs MEM MEM | TIME [0.109 |unsat
AR-fixpoint-9.qdimacs MEM MEM | TIME |0.109 |unsat
cache-coherence-2-fixpoint-1.qdimacs(3298.794( 193.22 | MEM | 0.218 |unsat
cache-coherence-2-fixpoint-2.qdimacs| TIME | TIME | MEM | 1.217 [unsat
cache-coherence-2-fixpoint-3.qdimacs| TIME | TIME | MEM | 2.417 [unsat
cache-coherence-2-fixpoint-4.qdimacs| TIME | TIME | MEM |3.946 |unsat
cache-coherence-2-fixpoint-5.qdimacs| MEM | TIME | MEM | 7.098 [unsat
cache-coherence-2-fixpoint-6.qdimacs| TIME TIME | MEM |10.748[unsat
cache-coherence-3-fixpoint-1.qdimacs| TIME [630.714| MEM | 0.343 [unsat
cache-coherence-3-fixpoint-2.qdimacs| TIME | TIME | MEM | 2.09 [unsat
cache-coherence-3-fixpoint-3.qdimacs| TIME | TIME | MEM | 4.461 [unsat
ethernet-fixpoint-1.qdimacs 1036.26 | 63.214 | MEM | 0.748 |unsat
ethernet-fixpoint-2.qdimacs MEM |3266.96| MEM | 2.793 |unsat
ethernet-fixpoint-3.qdimacs MEM | TIME | MEM [ 4.696 |unsat
ethernet-fixpoint-4.qdimacs TIME TIME | MEM | 9.999 |unsat
itc-b13-fixpoint-1.qdimacs 2.277 | 1.643 | MEM |0.031 |unsat
itc-b13-fixpoint-10.qdimacs 704.89 [105.746] MEM | 1.357 |sat
itc-b13-fixpoint-2.qdimacs 5.94 2.483 | MEM | 0.171 |unsat
itc-b13-fixpoint-3.qdimacs 23.183 | 11.654 | MEM [ 0.203 |sat
itc-b13-fixpoint-4.qdimacs 29.02 | 14.42 | MEM |0.328 [sat
itc-b13-fixpoint-5.qdimacs 850.897 [130.657| MEM | 0.484 [sat
itc-b13-fixpoint-6.qdimacs 1755.936( 59.454 | MEM | 0.577 |sat
itc-b13-fixpoint-7.qdimacs 277.154 | 41.524 | MEM | 0.764 [sat
itc-b13-fixpoint-8.qdimacs 515.197 [ 109.94 | MEM | 0.967 [sat
itc-b13-fixpoint-9.qdimacs TIME |417.43| MEM |1.123 [sat
pi-bus-fixpoint-1.qdimacs TIME | TIME | MEM | 0.437 |unsat
pi-bus-fixpoint-2.qdimacs TIME | TIME | MEM |[3.089 |unsat
pi-bus-fixpoint-3.qdimacs TIME TIME | MEM |5.132 |unsat
sdlx-fixpoint-1.qdimacs 3.487 1.61 MEM | 0.124 unsat
sdix-fixpoint-10.qdimacs TIME | TIME | MEM | TIME |?
sdIx-fixpoint-2.qdimacs 1017 2.32 MEM | 0.281 |unsat
sdlx-fixpoint-3.qdimacs 298.317 [ 12.854 | MEM | 0.608 |unsat
sdIx-fixpoint-4.qdimacs 096.083(101.177| MEM | 1.232 |unsat
sdIx-fixpoint-5.qdimacs 490.48 |202.53 | MEM |2.121 [unsat
sdIx-fixpoint-6.qdimacs MEM TIME | MEM | TIME |?
sdix-fixpoint-7.qdimacs TIME | TIME | MEM | TIME |?
sdIx-fixpoint-8.qdimacs TIME | TIME | MEM | TIME |?
sdix-fixpoint-9.qdimacs TIME | TIME | MEM | TIME |?
small-bug1-fixpoint-1.qdimacs 0.507 | 0.957 | 0.17 0 |sat
small-bug1-fixpoint-10.qdimacs 1.074 | 0.124 | 0.357 | 0.094 |sat
small-bug1-fixpoint-2.qdimacs 0.48 0.08 | 0.147 [0.031 |sat
small-bug1-fixpoint-3.qdimacs 0.5 0.083 | 0.16 |[0.031 [sat
small-bug1-fixpoint-4.qdimacs 0.787 | 0.087 | 0.163 | 0.046 [sat
small-bug1-fixpoint-5.qdimacs 0.873 | 0.097 | 0.19 |0.031 [sat
small-bug1-fixpoint-6.qdimacs 0.924 | 0.097 | 0.184 | 0.047 |sat
small-bug1-fixpoint-7.qdimacs 0.797 | 0.103 | 0.233 | 0.062 [sat
small-bug1-fixpoint-8.qdimacs 0.96 0.107 | 0.21 |0.062 |sat
small-bug1-fixpoint-9.qdimacs 0.826 | 0.113 | 0.226 | 0.077 [sat

Table 7.8: Timing data for hardware fixpoint checks (Part 1).
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sKizzo | QUBE |Quantor| Z3 |Result
small-dyn-partition-fixpoint-1.qdimacs | 0.61 | 0.127 | 0.186 [0.015/unsat
small-dyn-partition-fixpoint-10.qdimacs| 2.206 | TIME | MEM |0.093|unsat
small-dyn-partition-fixpoint-2.qdimacs | 0.963 | 0.513 | 2.42 |0.031[unsat
small-dyn-partition-fixpoint-3.qdimacs | 0.97 | 4.383 | 4.25 [0.016|unsat
small-dyn-partition-fixpoint-4.qdimacs | 1.064 | 6.043 | 33.11 |0.031|unsat
small-dyn-partition-fixpoint-5.qdimacs | 0.983 | 125.81 | MEM |0.063[unsat
small-dyn-partition-fixpoint-6.qdimacs | 1.41 (776.993| MEM |0.046(unsat
small-dyn-partition-fixpoint-7.qdimacs | 1.123 |2347.22| MEM [0.062|unsat
small-dyn-partition-fixpoint-8.qdimacs | 1.454 (2538.42| MEM |0.046(unsat
small-dyn-partition-fixpoint-9.qdimacs | 2.14 | TIME | MEM [0.078|unsat
small-equiv-fixpoint-1.qdimacs MEM | TIME | MEM |0.015(sat
small-equiv-fixpoint-10.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-2.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-3.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-4.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-5.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-6.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-7.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-8.qdimacs MEM | TIME | MEM |TIME|?
small-equiv-fixpoint-9.qdimacs MEM | TIME | MEM |TIME|?
small-pipeline-fixpoint-1.qdimacs TIME | TIME | MEM |0.016|unsat
small-pipeline-fixpoint-10.qdimacs MEM | TIME | MEM |TIME|?
small-pipeline-fixpoint-2.qdimacs TIME | TIME | MEM [0.031|unsat
small-pipeline-fixpoint-3.qdimacs TIME | TIME | MEM |0.093|unsat
small-pipeline-fixpoint-4.qdimacs TIME | TIME | MEM [TIME|?
small-pipeline-fixpoint-5.qdimacs TIME | TIME | MEM [TIME|?
small-pipeline-fixpoint-6.qdimacs TIME | TIME | MEM [TIME|?
small-pipeline-fixpoint-7.qdimacs TIME | TIME | MEM |TIME|?
small-pipeline-fixpoint-8.qdimacs TIME | TIME | MEM [TIME|?
small-pipeline-fixpoint-9.qdimacs MEM | TIME | MEM |TIME|?
small-seg-fixpoint-1.qdimacs 976.613| 3.84 | MEM [0.015|unsat
small-seq-fixpoint-10.qdimacs TIME | TIME | MEM [0.031|unsat
small-seq-fixpoint-2.qdimacs MEM | TIME [ MEM |0.015[unsat
small-seq-fixpoint-3.qdimacs MEM | TIME | MEM |0.016|unsat
small-seq-fixpoint-4.qdimacs TIME | TIME | MEM |0.015|unsat
small-seq-fixpoint-5.qdimacs TIME | TIME | MEM [0.031|unsat
small-seq-fixpoint-6.qdimacs TIME | TIME | MEM |0.031|unsat
small-seq-fixpoint-7.qdimacs TIME | TIME | MEM |0.031|unsat
small-seq-fixpoint-8.qdimacs TIME | TIME | MEM |0.046|unsat
small-seq-fixpoint-9.qdimacs TIME | TIME | MEM [0.046|unsat
small-swap1-fixpoint-1.qdimacs 8.813 | 0.223 | MEM |0.015|unsat
small-swap1-fixpoint-10.qdimacs TIME | 2.02 | MEM |0.063|sat
small-swap1-fixpoint-2.qdimacs 24.506 | 0.36 MEM |0.031|sat
small-swap1-fixpoint-3.qdimacs 37.483 | 0.427 | MEM |0.016|sat
small-swap1-fixpoint-4.qdimacs TIME 0.6 MEM |0.016|sat
small-swap1-fixpoint-5.qdimacs TIME | 0.79 | MEM |0.031|sat
small-swap1-fixpoint-6.qdimacs MEM | 0.947 | MEM |0.031(sat
small-swap1-fixpoint-7.qdimacs TIME | 1.157 | MEM [0.047|sat
small-swap1-fixpoint-8.qdimacs TIME | 1.383 | MEM |0.062|sat
small-swap1-fixpoint-9.qdimacs TIME | 1.626 | MEM |0.062|sat
small-swap2-fixpoint-1.qdimacs 0.55 | 0.163 | MEM | 0 |unsat
small-swap2-fixpoint-10.qdimacs 319.853( 1.787 | MEM |0.047|sat
small-swap2-fixpoint-2.qdimacs 7.007 | 0.31 MEM |0.016|unsat
small-swap2-fixpoint-3.qdimacs 38.127 | 0.45 | MEM |0.016|sat
small-swap2-fixpoint-4.qdimacs 40.767 | 0.543 | MEM |0.016|sat
small-swap2-fixpoint-5.qdimacs 101.52 | 0.746 | MEM |0.031|sat
small-swap2-fixpoint-6.qdimacs 81.994 | 0.836 | MEM (0.031|sat
small-swap2-fixpoint-7.qdimacs 152.68 | 1.11 MEM |0.046|sat
small-swap2-fixpoint-8.qdimacs 188.513| 1.267 | MEM (0.046|sat
small-swap2-fixpoint-9.qdimacs 318.016 1.576 | MEM |0.031sat

Table 7.9: Timing data for hardware fixpoint checks (Part 2).
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sKizzo | QuUBE |Quantor| Z3 |Result]
small-synabs-fixpoint-1.qdimacs 2.2 [0.197| 0.523 (0.016|unsat
small-synabs-fixpoint-10.qdimacs| 7.203 |329.67 MEM |0.093[unsat
small-synabs-fixpoint-2.qdimacs | 1.843 | 0.563 | MEM |0.016|unsat
small-synabs-fixpoint-3.qdimacs | 2.273 | 1.806 | MEM |0.016[unsat
small-synabs-fixpoint-4.qdimacs | 2.83 [2.117| MEM |0.031[unsat
small-synabs-fixpoint-5.qdimacs | 3.693 | 4.03 | MEM |0.046(unsat
small-synabs-fixpoint-6.qdimacs | 3.887 (17.686| MEM |0.047[unsat
small-synabs-fixpoint-7.qdimacs | 5.437 (26.947| MEM |0.062[unsat
small-synabs-fixpoint-8.qdimacs | 7.447 (61.907| MEM |0.062[unsat
small-synabs-fixpoint-9.qdimacs | 6.907 (76.893| MEM |0.078|unsat
usb-phy-fixpoint-1.qdimacs 229 2.163| MEM |0.187|unsat
usb-phy-fixpoint-2.qdimacs TIME [50.123] MEM |1.388|unsat
usb-phy-fixpoint-3.qdimacs TIME | 14.86 | MEM (2.496|unsat
usb-phy-fixpoint-4.qdimacs TIME | TIME [ MEM |5.491|unsat
usb-phy-fixpoint-5.qdimacs TIME | TIME [ MEM |7.753|unsat

Table 7.10: Timing data for hardware fixpoint checks (Part 3).
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sKizzo | QuUBE |Quantor| Z3 |Result
1394diag_ioctl.c.qdimacs TIME | TIME MEM | TIME |?
1394diag_isochapi.c.qdimacs MEM | TIME | MEM |40.591 |sat
audio_ac97_common.cpp.qdimacs MEM | TIME | MEM | 0.468 [sat
audio_ac97_rtstream.cpp.qdimacs MEM | TIME | MEM | 0.202 [sat
audio_ac97_wavepcistream.cpp.qdimacs TIME | TIME | MEM |416.757|unsat
audio_ac97_wavepcistream2.cpp.qdimacs MEM | TIME | MEM | 0.483 |unsat
audio_ac97_wavepcistream3.cpp.qdimacs MEM | TIME | MEM | 0.219 |unsat
audio_ddksynth_csynth.cpp.qdimacs MEM | TIME | MEM | 0.358 |unsat
audio_ddksynth_csynth2.cpp.qdimacs MEM | TIME | MEM | 0.094 [sat
audio_ddksynth_voice.cpp.qdimacs TIME TIME MEM | 28.08 |unsat
audio_dmusuart_mpu.cpp.qdimacs TIME | TIME | MEM |34.179 sat
audio_fmsynth_miniport.cpp.qdimacs MEM | TIME | MEM | 0.156 [sat
audio_fmsynth_miniport2.cpp.qdimacs MEM |626.356 | MEM | 0.109 [sat
audio_gfxswap.xp_filter.cpp.qdimacs MEM | TIME | MEM | 0.592 [unsat
audio_sysfx_swap.cpp.qdimacs MEM | TIME | MEM | TIME [?
AVStream_hwsim.cpp.qdimacs TIME | TIME | MEM | TIME |?
AVStream_image.cpp.qdimacs MEM | TIME | MEM |22.401 |sat
filesys_cdfs_allocsup.c.qdimacs MEM | TIME | TIME | TIME [?
filesys_cdfs_cddata.c.qdimacs MEM TIME MEM | TIME (?
filesys_cdfs_namesup.c.qdimacs MEM TIME MEM | TIME |?
filesys_cdfs_namesup2.c.qdimacs MEM | TIME | MEM | 0.14 [sat
filesys_fastfat_allocsup.c.qdimacs MEM | TIME | MEM | 0.187 [sat
filesys_fastfat_cachesup.c.qdimacs MEM | TIME | MEM | 0.202 [sat
filesys_fastfat_easup.c.qdimacs MEM | TIME | MEM | 6.676 [sat
filesys_fastfat_write.c.qdimacs MEM TIME MEM | TIME (?
filesys_filter_namelookup.c.qdimacs MEM | TIME | MEM | TIME |?
filesys_smbmrx_cvsndrcv.c.qdimacs 523.737| TIME MEM | 0.156 |unsat
filesys_smbmrx_midatlas.c.qdimacs 40.877 | TIME | MEM | 0.047 |unsat
filesys_smbmrx_smbxchng.c.qdimacs MEM | TIME | MEM |55.816 |unsat
general_pcidrv_sys_hw_eeprom.c.qdimacs MEM TIME MEM | 0.843 |unsat
general_pcidrv_sys_hw_eeprom?2.c.qdimacs MEM | TIME | MEM | 0.499 [sat
general_toaster_exe_notify_notify.c.qdimacs MEM TIME MEM | TIME (?
hid_firefly_app_firefly.cop.qdimacs TIME | TIME | MEM | TIME |?
hid_hclient_ecdisp.c.qdimacs MEM | TIME | MEM |40.108 [sat
input_mouser_cseries.c.qdimacs MEM TIME MEM | 0.421 |sat
input_mouser_detect.c.qdimacs MEM [1796.263| MEM | 0.031 [sat
input_pnpi8042_moudep.c.qdimacs MEM | TIME | MEM |51.377 [sat
ir_smscir_io.c.qdimacs MEM TIME MEM | TIME |?
kernel_agplib_init.c.qdimacs MEM | TIME | MEM | 0.109 [sat
kernel_agplib_intrface.c.qdimacs MEM TIME MEM | 0.187 |sat
kernel_uagp35_gart.c.qdimacs MEM | TIME | MEM [40.107 [sat
kmdf_AMCC5933_sys_S5933DK1.c.qdimacs MEM TIME MEM | 0.141 [sat
kmdf_osrusbfx2_exe_dump.c.qdimacs MEM TIME MEM | 47.411 |unsat
kmdf_osrusbfx2_exe_testapp.c.qdimacs MEM TIME MEM | TIME (?
kmdf_pcidrv_sys_hw_nic_init.c.qdimacs MEM TIME MEM | 38.016 [sat
kmdf_pcidrv_sys_hw_physet.c.qdimacs MEM | TIME | MEM | 0.031 [sat
kmdf_usbsamp_sys_queue.c.qdimacs MEM | TIME | MEM | TIME |?
mmedia_gsm610_gsm610.c.qdimacs MEM | TIME | MEM | 0.187 [sat
mmedia_gsm610_gsm6102.c.qdimacs 284.807| TIME | MEM | 0.109 |unsat
mmedia_gsm610_gsm6103.c.qdimacs 371.61| TIME | MEM | 0.577 |unsat
mmedia_imaadpcm_imaadpcm.c.qdimacs MEM TIME MEM | TIME (?
network_irda_miniport_nscirda_comm.c.qdimacs | MEM TIME MEM |408.901|unsat
network_irda_miniport_nscirda_settings.c.qdimacs| MEM TIME MEM |515.143|unsat
network_ndis_coisdn_TpiParam.c.qdimacs MEM TIME MEM | 8.158 |sat
network_ndis_e100bex_5x_kd_mp_dbg.c.qdimacs| MEM TIME MEM | TIME (?
network_ndis_rtinwifi_extsta_st_aplst.c.qdimacs MEM TIME MEM | 42.028 [sat
network_ndis_rtinwifi_extsta_st_misc.c.qdimacs TIME TIME MEM | TIME (?
network_ndis_rtinwifi_hw_hw_ccmp.c.qdimacs MEM TIME MEM | 1.279 [sat
network_trans_sys_notify.c.qdimacs 209.523| TIME MEM | 6.224 |unsat

Table 7.11: Timing data for ranking function synthesis checks.



Chapter 8

Conclusion

This dissertation presents a new method for termination checking called Com-
positional Termination Analysis. It eliminates the costly safety check in the
Terminator algorithm [35] and thereby outperforms this algorithm in practice.
Both algorithms require underlying methods for ranking relation synthesis and
two methods for the special case of (finite-state) Bit-vector programs are pre-
sented. When combined, these techniques present a very efficient technique
for termination checking of embedded software or operation system compo-
nents like device drivers.

A substantial experimental evaluation of Compositional Termination Analy-
sis indicates an average speedup of 52 over the Terminator algorithm when
using the same ranking relation synthesis engine. This result makes Com-
positional Termination Analysis the fastest available method for termination
analysis and enables the execution of termination checks as a routine step in
the software design process.

While ranking relation synthesis methods are available for a number of do-
mains, efficient procedures for programs over Bit-vectors (or machine inte-
gers) have not until now been available. This dissertation presents two new
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algorithms which fill this gap: a complete method based on a reduction to
quantifier-free Presburger arithmetic (and Integer Linear Programming) and a
template-matching method for finding ranking functions of specified classes.
Through experimentation with examples drawn from Windows device drivers
their efficiency and applicability to systems-level code is demonstrated. In
their current state, the bottleneck with these methods is the reachability anal-
ysis engine. Future research therefore should consider optimizations of the
reachability checker or new procedures specific to reachability analysis in the
context of termination proving.

Many sub-problems of termination checking or the underlying ranking re-
lation synthesis algorithms may be solved using decision procedures for the
validity problem of quantified Boolean formulae (QBF). These decision proce-
dures however, are not usually able to produce certificates for their answers.
This dissertation demonstrates that it is possible to define a proof format for
QBF that is applicable to a wide range of different QBF decision procedures.
Nevertheless, important common features of other QBF decision procedures
cannot be traced efficiently in this format. Clearly, there is considerable scope
for future work that extends or replaces this certificate format. Modern QBF
decision procedures make decision based on rules which do not have an im-
mediate equivalent in the certificate format and it is conjectured that these
require stronger proof rules than the resolution calculus combined with the
quantified extension rule presented in this dissertation.

To circumvent the performance and certification problems of QBF decision
procedures, an alternative is presented in the form of a different logic that
is a superset of QBF. Quantified bit-vector logic (QBV) is ideally suited as
an interface between verification or synthesis tools and underlying decision
procedures. Different fragments of this logic are required in virtually every
verification or synthesis technique known, making QBV one of the most prac-
tically relevant logics. This dissertation presents a new approach to solving
quantified bit-vector formulas based on a set of simplifications and rewrite
rules, as well as a new model finding algorithm based on an iterative refine-
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ment scheme. Extensive experimental evaluation indicates that this decision
procedure is up to five orders of magnitude faster when compared to mod-
ern QBF decision procedures, while certification of the decision procedure
becomes a trivial matter.

Combined, the methods presented in this theses present an integrated so-
lution to bit-precise termination analysis of low-level and embedded software.
Through extensive experimental work this solution is proven to be a viable
alternative to testing in the design process which identifies termination bugs
efficiently and effectively. Through the increase in performance over existing
methods, checking software for termination as a routine step before it is re-
leased becomes a practical possibility. Perhaps this demonstration of utility
could contribute to such checking becoming common practice.
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Appendix A

Typing Rules for Bit-Vector
Programs

We write ¢ : n to denote that the expression t is correctly typed and denotes
a bit-vector of length n. Given a statement or program 3, we write 8 : L to
express that 3 is correctly typed. In the following rules, x € X ranges over
variables, n € IN* over positive natural numbers, s, t over expressions, 3,y
over statements:

ke Nt t:n s:m t:n .

kn:n *,:n —t:n sot:n o€ {t, x,+ &, [}

a@)=n  s:n t:k a(z)=n t:n
T:n sot:n 0 €{< >} r:i=t:1
t:k s:m _t:n t:1

[ — :< S

cast,(t) : n sot:1 oc{==<} assume (t) : L

B:L ~v:1L B:1L ~:L B:L ~:L
skip : L B;v: L gO~y:L PBrepeat{~v}: L
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Appendix B

The QB Certificate File
Format

The following sections define a proposed file format for certificates of QBF
instances.

B.1 Definitions

A variable in any QBF problem is represented by its variable index; an integer
in the range [1,231].

A literal is a variable in either negated or non-negated form. A literal is rep-
resented by an integer in the range [—23!, 231]\ {0}, where negative numbers
represent negated variables.

A clause is a disjunction of literals and is represented by a set of literals.
No order of literals is assumed. Every clause implicitly has a clause index; all
clauses of a QBF problem are numbered ascending in order of appearence in
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the according problem file. Clause indices are integers from the range [1, 232].

The QBF problem is assumed to be given in a file that uses the QDIMACS
format.

B.2 Basic Rules

NL — the newline character ("\n’).
DIGIT—(0]1]2|3|4|5|6|7]8]9).
LETTER—(@|... |z |A]... | 2).
EXTRACHAR— (.| _|$]...)-
FILENAME — (LETTER | DIGIT | EXTRACHAR)
{ LETTER | DIGIT | EXTRACHAR }.
NUMBER — DIGIT { DIGIT }.
CINDEX — NUMBER.
VINDEX — NUMBER.
LITERAL —[-] VINDEX
CCOUNT — NUMBER.

Note: A NUMBER is always assumed to be an integer in the range [1, 232],
except for the VINDEX which refers to a variable index and thus is in the range
[1,231].

B.3 Header

Every QB Certificate file is required to begin with an appropriate header line
that contains the QBCertificate keyword.

le.,

HEADER — QBCertificate NL.
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B.4 Extensions

Based on the Extension Theorem (Chapter [5 and [62]), extension rules are
supported. Instead of allowing the introduction of arbitrary functions (which
would be too hard to verify), only two important types are supported. An
extension line has the format

EXTENSION — ITE | AND.

where the first VINDEX defines a fresh variable that will be quantified existen-
tially and in the scope of the innermost variable that appears in the extension.

If-Then-Else. The If-Then-Else extension rule allows the introduction of a
new variable that is defined to be the If-Then-Else of three existing variables.
The If-Then-Else extension thus requires exactly three parameters:

ITE—E VINDEX I LITERAL LITERAL LITERAL NL.

This rule will introduce four new clauses into the original formula; for w = if
x then a else b the clauses (—w V -z V a), (-w V x Vb), (wV -z V —a) and
(w V x V —b) are introduced.

AND. A new variable may be defined to be the logical AND of existing vari-
ables:

AND — E VINDEX A { LITERAL } 0 NL.

The number of existing variables that are used in this definition is not limited,
but the extension line must be terminated by a 0.

This rule will introduce n + 1 clauses into the original formula: (—f V v1) to
(=fVu,)and (fV—wyV---V-oy,), where f is the new variable that depends
on the existing variables v;.



148 APPENDIX B. THE QB CERTIFICATE FILE FORMAT
B.5 Resolution

Whenever a clause should be (g-)resolved against another, this must be listed
in the certificate. The resolution line format is the same as used in traces for
SAT-Solvers.

le.,

RESOLUTION — CINDEX
(* | ({ LITERAL} 0))
{ CINDEX } 0 NL.

The first CINDEX in this rule defines the new clause index that the resolvent
should be assigned. What follows is the resolvent (a sequence of LITERALS,
terminated by a 0) and the antecedents that the desired resolvent can be cal-
culated from (a sequence of CINDEXs, terminated by a 0). The actual order
of the resolutions will be determined by the verifier via constraint propagation.

Note that a g-resolution step includes forall-reduction.

B.6 Conclusions

The last line in any QB Certificate is the conclusion line that states whether
the original problem is to be proven valid or invalid. In case of an unsatisfiable
problem the index of the clause which should be empty, must be given.

le.,

CONCLUSION — CONCLUDE (VALID {VINDEX LITERAL} |
INVALID CINDEX).

For valid instances, the model is to be supplied in the conclusion line. New
variables have to be defined by extensions first. The conclusion line will then
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contain a set of equivalences e = n, where e is an original, existentially quan-
tified variable and n is an extension variable. These equivalences are to be
supplied as a set of VINDEX/LITERAL pairs in the conclusion line.

B.7 The QB Certificate

Finally, a complete QB Certificate is defined as

CERTIFICATE — HEADER
{RESOLUTION |
EXTENSION }
CONCLUSION.
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Appendix C

The GOTO-CC Model
Extractor

One of the problems of model checking in an industrial environment is that
most software sources come in the form of multiple source files, which are
compiled separately and then linked together to form the binaries. This is
especially the case for the vast number of open source projects written in C
and C++, which are an enormous source of benchmarks for model checkers,
while at the same time they could benefit from researchers applying their
newest technologies to them and then reporting any bugs they find.

Most model checking tools are also designed to handle one input language
only, which restricts them to being used in a specialized field of model check-
ing. While new techniques are invented, implemented and tested for the one
language that the model checker supports, they often are not implemented
in other model checkers that support different languages. Because of this,
certain model checking techniques are only used in a very small environment
and only on a special type of program or model, even though they might be
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useful on other programs (and languages) as well.

To overcome these issues, we have designed GoT0-CC, a multi-frontend
model extractor, which generates GoTO-programs from source code. The
result is a model file in binary form. Alternatively, GOTO-CC extracts a model
file in XML format, which allows for easier debugging. We parse the source
files (currently C and C++ are supported), compile them into separate object
files, which we link together to form a binary file, much like a compiler would
do. In turn, this file can be loaded into one of our model checkers, e.g., CBMC
or SATABS [27].

Introducing a separate compilation step reduces the demands on the model
checker, as it does not have to support various complicated languages. In
scenarios that require an input file to be loaded frequently, e.g., when the
source base that is being analyzed is under active development, the load
times are reduced, as unmodified modules do not have to be recompiled.
GoT0-CC fully supports library linking, such that it is possible to extract and
use library models.

Although produced using similar processes as binary files, GoTo-CC model
files are not machine code binaries, but representations of the original source
code. These models include the complete symbol table that was generated
during parsing and all functions, translated into GoTO-program format. Thus,
the only control-flow structure used in this format is the GOTO instruction, very
much like in machine code. While this seems to be a restriction at first glance,
it simplifies the model checking algorithms that operate on the model. One
could argue that information about the structure of the code is lost, but all this
information can be preserved in the form of annotations within the model.

Another helpful feature of GoTo-CC is the generation of flowgraphs for
functions. By employing the ~dot command-line option, goto-cc produces a
Graphviz compatible file, that contains a graphical description of every func-
tion in a module. Figure [C.7]shows an example of some C language source
code and the generated control flow graph.
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Related Work: GMC? [52] is a software model checker that is based on
the internal representation format of the new version of GCC (formerly called
Tree-SSA branch). This version of GCC features two new intermediate lan-
guages called GENERIC and GIMPLE, which can be used by other programs
to analyze any program in one of the six GCC input languages. GENERIC
is meant to be used for abstract syntax tree analysis and optimization, while
GIMPLE can be used for control flow analysis and optimization.

By basing GMC? on these intermediate languages, the model checker is
simplified and the authors can use six different input languages at once. How-
ever, the model checker is bound to use the information that it gets from
GENERIC and GIMPLE, which sadly is not always sufficient for every kind
of analysis. Also, the static analyzers MOPS [23] and COVERITY [43] are
both tightly integrated with the GCC build process.

A popular tool for the C language is the CIL (C Intermediate Language) [76]
parser library. It can be used as a preprocessor and parser for C programs
and supports most of the GCC and Microsoft extensions. Where support for
C as an input language is required, CIL can be included and its parse trees
used directly, or CIL may be used to transform C code into a small fragment of
C, which is considerably easier to handle than full C. CIL, however, can only
be used for the C language and does not support C++. Examples of applica-
tions that use CIL include the F-Soft Software Verification Platform [57], and
BLAST [55].

C.1 Separating Model Extraction

Compiling and linking the modules of a software project can become a very
complex task. The most commonly used build tool, which automates this
process, is the make utility, which is the most prevalent build tool on Unix and
Linux systems. Even Microsoft’'s nmake utility, which comes with their Visual
Studio Suite and is used to compile large software projects for the Windows



154 APPENDIX C. THE GOTO-CC MODEL EXTRACTOR

extern int getch( void );
extern int printf( const char %, ...);

c:man

int main( void ) {
char a;
a = getch();
while (al="\n") {
switch (a) {
case 'a’:
case 'b’:
printf("a_or_b");
break ;
case 'c’: (rewrn ;) ((inya== 98| (inya== 972)
printf("c_and_");
/% fall—through =/

return_value_getch$1 = getch();

[a = (signed char)return_val ueﬁgetch$1;]

default:
printf("d");
break; false ( printf(&"c and "[0]);
}
} printf(&"d"[0]);
return O;

}

Figure C.1: Fragment of a C program and its corresponding, automatically
generated, control flow graph.

platform, uses a very similar configuration file layout.

When looking at software projects implemented in languages like C or C++,
the most common case is that of a set of .c or .cpp files, accompanied by
a file called Makefile, which describes how to generate a binary from the
source files. Often the makefile doesn’t come ready-made with the source
code, but is generated by a script called configure, which enables the user to
set additional options and then sets the compilation options according to the
systems configuration.

In practice using a model checker within the build process is problematic;
usually it is necessary to replicate the build tools functionality to collect and
configure source code in the model checker. Using a model extractor like
GoT0-CC simplifies this step by first producing a model of the software project.
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The model is a direct derivation of the original source code and could theoret-
ically even be used to compile an executable from it. Nonetheless, the model
is a greatly simplified version of the original source code, meant to simplify
the model checking algorithms that work on it.

In addition to translating the input programs into programs that have a sim-
plified control flow, i.e., they only use the (conditional) GOTo instruction, GOToO-
CC also simplifies expressions and propagates constants.

C.2 Conclusion and Future Work

By compiling a software project that comes as a set of source code files into a
model file prior to feeding it to a model checker, we gain flexibility and simplify
the application of model checking algorithms to industrial software projects.
We also provide some evidence of the practical usability of our tooﬂ

Name LOC Description

gnupg-1.4.4 142,450/The GNU Privacy Guard.
sendmail-8.13.8 129,864|A popular E-Mail server.
inn-2.4.3 125,891|The internet-news daemon.
wu-ftpd-2.6.2 35,311|A widely used FTP server.
limmat-1.3 8,477|A SAT solver by A. Biere.

In the future, we plan to work on compatibility issues regarding GCC, Mi-
crosoft’s C-Compiler, and the respective system libraries until GoTo-CC can
seamlessly replace them when switching from debug mode to “verification
mode”. We plan to further improve the performance and to build a reference
set of libraries and applications that model checkers can be tested against.

"Lines of code were measured by running find . -name "%.[ch]" | xargs wc -1
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C.3 Availability

GoT0-CC is available for download athttp: //www.cprover.org/goto—cc/.
We currently distribute binaries for Linux and Windows, as well as a library of
ANSI-C header files to replace the original system headers in case of compat-

ibility issues. Our website also features a constantly expanding list of example
applications, model files and instructions on how to extract model files.


http://www.cprover.org/goto-cc/
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